A. | (-2,0] | B. | (0,2] | C. | (-∞,4] | D. | [4,+∞) |
分析 求出f(x),g(x)的值域,則f(x)的值域為g(x)的值域的子集.
解答 解:f(x)=-|x|≤0,∴f(x)的值域是(-∞,0].設g(x)的值域為A,
∵對任意x1∈R,都存在x2∈R,使f(x1)=g(x2),
∴(-∞,0]⊆A.
設y=ax2-4x+1的值域為B,
則(0,1]⊆B.
由題意當a=0時,上式成立.
當a>0時,△=16-4a≥0,解得0<a≤4.
當a<0時,ymax=$\frac{4a-16}{4a}$≥1,即1-$\frac{4}{a}$≥1恒成立.
綜上,a≤4.
故選:C.
點評 本題考查實數的取值范圍的求法,是中檔題,解題時要認真審題,注意對數性質的合理運用.
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {0,1,2,3,4} | B. | {0,1} | C. | {0,1,4} | D. | {1,2} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $(\frac{7π}{12},0)$ | B. | $(\frac{π}{6},0)$ | C. | $(\frac{5π}{8},0)$ | D. | $(\frac{2π}{3},-3)$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com