若關于x的方程x2+(m-3)x+m=0有兩個實根,其中一個大于1,另一個小于1,求實數(shù)m的取值范圍.

解:令f(x)=x2+(m-3)x+m,則其圖象是開口向上的拋物線,要使方程x2+(m-3)x+m=0有兩個實根,其中一個大于1,另一個小于1,必須且只需f(1)<0,即1+(m-3)×1+m<0,解得m<1為所求.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

△ABC中三個內角為A、B、C,若關于x的方程x2-xcosAcosB-cos2
C
2
=0有一根為1,則△ABC一定是( 。
A、直角三角形
B、等腰三角形
C、銳角三角形
D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的方程x2+ax-1=0在(-1,2)內恰好有一個解,則a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

7、若關于x的方程x2+(2-m2)x+2m=0的兩根一個比1大一個比1小,則m的范圍是
m>3或m<-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的方程x2+2(a-1)x+2a+6=0有一正一負兩實數(shù)根,則實數(shù)a的取值范圍
a<-3
a<-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的方程x2-4|x|+5=m有四個不同的實數(shù)解,則實數(shù)m的取值范圍是( 。

查看答案和解析>>

同步練習冊答案