2.已知函數(shù)f(x)=$\frac{{x}^{2}+1}{{x}^{2}+2kx+1}$(k>0).
(1)若對(duì)任意x∈(0,+∞),不等式f(x)≥$\frac{1}{2}$恒成立,求實(shí)數(shù)k的取值范圍;
(2)若對(duì)任意的a,b,c∈R+,均存在以$\frac{1}{f(a)}$,$\frac{1}{f(b)}$,$\frac{1}{f(c)}$為三邊邊長(zhǎng)的三角形,求實(shí)數(shù)k的取值范圍.

分析 (1)由題意可得x2+2kx+1≤2x2+2,即為2k≤x+$\frac{1}{x}$對(duì)x>0恒成立,運(yùn)用基本不等式求得不等式右邊的最小值,即可得到所求范圍;
(2)求得$\frac{1}{f(x)}$的范圍,由題意可得$\frac{1}{f(a)}$+$\frac{1}{f(b)}$>$\frac{1}{f(c)}$恒成立,即有2≥k+1,即可得到所求k的范圍.

解答 解:(1)函數(shù)f(x)=$\frac{{x}^{2}+1}{{x}^{2}+2kx+1}$(k>0),
對(duì)任意x∈(0,+∞),不等式f(x)≥$\frac{1}{2}$恒成立,
即有x2+2kx+1≤2x2+2,
即為2k≤x+$\frac{1}{x}$對(duì)x>0恒成立,
由x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$=2,(x=1取得等號(hào)),
則0<2k≤2,即0<k≤1.
則實(shí)數(shù)k的取值范圍為(0,1];    
(2)$\frac{1}{f(x)}$=$\frac{{x}^{2}+2kx+1}{{x}^{2}+1}$
=1+$\frac{2kx}{{x}^{2}+1}$=1+$\frac{2k}{x+\frac{1}{x}}$,
由x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$=2,(x=1取得等號(hào)),
可得$\frac{1}{f(x)}$∈(1,1+k].
對(duì)任意的a,b,c∈R+,均存在以$\frac{1}{f(a)}$,$\frac{1}{f(b)}$,$\frac{1}{f(c)}$為三邊邊長(zhǎng)的三角形,
即有$\frac{1}{f(a)}$+$\frac{1}{f(b)}$>$\frac{1}{f(c)}$恒成立,
即有2<$\frac{1}{f(a)}$+$\frac{1}{f(b)}$≤2k+2,1<$\frac{1}{f(c)}$≤k+1,
所以2≥k+1,即k≤1,
則0<k≤1.
則實(shí)數(shù)k的取值范圍為(0,1].

點(diǎn)評(píng) 本題考查不等式恒成立問(wèn)題的解法,注意運(yùn)用參數(shù)分離和基本不等式,考查三角形存在的條件,以及推理和運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓C以F1(-1,0),F(xiàn)2(1,0)為焦點(diǎn),且離心率$e=\frac{{\sqrt{2}}}{2}$
(1)求橢圓C的方程;
(2)設(shè)橢圓C與x軸正半軸、y軸正半軸的交點(diǎn)分別為A、B,是否存在過(guò)點(diǎn)$M(0\;,\;\sqrt{2})$的直線l1,滿足:直線l1與橢圓C有兩個(gè)不同交點(diǎn)P、Q,且使得向量$\overrightarrow{OP}+\overrightarrow{OQ}$與$\overrightarrow{AB}$垂直.如果存在,寫(xiě)出l1的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.動(dòng)點(diǎn)P在直線x+y-4=0上,動(dòng)點(diǎn)Q在直線x+y=8上,則|PQ|的最小值為( 。
A.$\sqrt{10}$B.2$\sqrt{2}$C.$\sqrt{6}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=ex+2(x<0)與g(x)=ln(x+a)+2的圖象上存在關(guān)于y軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,e)B.(0,e)C.(e,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若A為不等式組$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{x-y+2≥0}\end{array}\right.$表示的平面區(qū)域,則當(dāng)a從-2連續(xù)變化到0時(shí),動(dòng)直線x+y=a掃過(guò)A中的那部分區(qū)域的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)y=x2+ln|x|的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知直線lk:y=kx+k2(k∈R),下列說(shuō)法中正確的是①③④.(注:把你認(rèn)為所有正確選項(xiàng)的序號(hào)均填上)
①lk與拋物線$y=-\frac{x^2}{4}$均相切;      
②lk與圓x2+(y+1)2=1均無(wú)交點(diǎn);
③存在直線l,使得l與lk均不相交;   
④對(duì)任意的i,j∈R,直線li,lj相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)y=|x-1|+|x+7|的最小值為n,則二項(xiàng)式(x+$\frac{1}{x}$)n展開(kāi)式中$\frac{1}{{x}^{2}}$的系數(shù)為56(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若冪函數(shù)f(x)=xa的圖象過(guò)點(diǎn)(4,2),則f(9)=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案