在平面四邊形ABCD中,AB=3,BC=4,∠ABC=90°,△ACD是正三角形,則
AC
BD
的值為( 。
A、-2
B、2
C、
7
2
D、-
7
2
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:如圖所示,建立直角坐標(biāo)系.取AC的中點(diǎn)E,連接DE,BE.由A(0,3),C(4,0),可得E(2,
3
2
)

由于
DE
AC
,可得
DE
AC
=0.利用
AC
BD
=
AC
•(
BE
+
ED
)
=
AC
BE
即可得出.
解答: 解:如圖所示,建立直角坐標(biāo)系.
取AC的中點(diǎn)E,連接DE,BE.
∵A(0,3),C(4,0),∴E(2,
3
2
)

DE
AC
,∴
DE
AC
=0.
AC
BD
=
AC
•(
BE
+
ED
)
=
AC
BE

=(4,-3)•(2,
3
2
)

=8-
9
2

=
7
2

故選:C.
點(diǎn)評(píng):本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)量積運(yùn)算性質(zhì)、向量的三角形法則,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若A={x|3x-7>0},則∁RA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(sinx-1,1),
b
=(sinx+3,1),
c
=(-1,-2),
d
=(k,1),k∈R.
(Ⅰ)若x∈[-
π
2
,
π
2
],且
a
∥(
b
+
c
),求x的值;
(Ⅱ)若存在x∈R,使得(
a
+
d
)⊥(
b
+
c
),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知在正方體ABCD-A1B1C1D1中,面對(duì)角線A1B、BC1的中點(diǎn)為E、F,求證:EF∥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)D是不等式組
x+2y≤10
2x+y≥3
0≤x≤4
y≥1
表示的平面區(qū)域,則D中的點(diǎn)P(x,y)到直線x+y=10距離的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos2xcos
π
5
-2sinxcosxsin
5
的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,M,N分別是CD,BC的中點(diǎn),
AM
=(1,2) , 
AN
=(3,1),則
AB
AM
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ) 如圖,一個(gè)扇形OAB的面積是1cm2,它的周長是4cm,求圓心角的弧度數(shù)和弦長AB.
(Ⅱ) 已知f(x)=-sin2x+sinx+a,若1≤f(x)≤
17
4
對(duì)一切x∈R恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)閧x|x∈R且x≠0},對(duì)定義域內(nèi)的任意x1,x2,都有f(x1•x2)=f(x1)+f(x2),且當(dāng)x>1時(shí),f(x)>0,
(1)求f(-1)的值;
(2)求證:f(x)是偶函數(shù);
(3)求證:f(x)在(0,+∞)上是增函數(shù);
(4)當(dāng)f(16)=2時(shí),解不等式f(x)+f(6x-5)<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案