【題目】一個(gè)幾何體的三視圖如圖所示,已知正(主)視圖是底邊長為1的平行四邊形,側(cè)(左)視圖是一個(gè)長為寬為1的矩形,俯視圖為兩個(gè)邊長為1的正方形拼成的矩形.

(1)求該幾何體的體積;

(2)求該幾何體的表面積

【答案】(1)(2)

【解析】

試題分析:(1)根據(jù)正視圖是底面邊長為的平行四邊形,側(cè)視圖是個(gè)長為,寬為的矩形,得到該幾何體是一個(gè)平行六面體,其底面是邊長為的正方形,高為,即可求解體積;(2)由(1)看出的幾何體,知道該平行六面體中,,,得到側(cè)棱長,表示幾何體的表面積,得到結(jié)果.

試題解析:(1)由三視圖可知,該幾何體是一個(gè)平行六面體(如圖),其底面是邊長為1的正方形,高為,所以

(2)由三視圖可知,

該平行六面體中平面,平面,

,側(cè)面,均為矩形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等值算法可求得20485的最大公約數(shù)是(  )

A. 15 B. 17 C. 51 D. 85

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3 000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.

1當(dāng)每輛車的月租金定為3 600元時(shí),能租出多少輛車?

2當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若有兩個(gè)不相等的實(shí)數(shù)根,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了參加市高中籃球比賽,某中學(xué)決定從四個(gè)籃球較強(qiáng)的班級的籃球隊(duì)員中選出人組成男子籃球隊(duì),代表該地區(qū)參賽,四個(gè)籃球較強(qiáng)的班級籃球隊(duì)員人數(shù)如下表:

班級

高三(7)班

高三(17)班

高二(31)班

高二(32)班

人數(shù)

12

6

9

9

1)現(xiàn)采取分層抽樣的方法從這四個(gè)班中抽取運(yùn)動(dòng)員,求應(yīng)分別從這四個(gè)班抽出的隊(duì)員人數(shù);

2)該中學(xué)籃球隊(duì)奮力拼搏,獲得冠軍.若要從高三年級抽出的隊(duì)員中選出兩位隊(duì)員作為冠軍的代表發(fā)言,求選出的兩名隊(duì)員來自同一班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)平面中,的兩個(gè)頂點(diǎn)為,平面內(nèi)兩點(diǎn)同時(shí)滿足:;

1求頂點(diǎn)的軌跡的方程;

2過點(diǎn)作兩條互相垂直的直線,直線與點(diǎn)的軌跡相交弦分別為,設(shè)弦的中點(diǎn)分別為

求四邊形的面積的最小值;

試問:直線是否恒過一個(gè)定點(diǎn)?若過定點(diǎn),請求出該定點(diǎn),若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為的菱形中,,點(diǎn)分別是邊,的中點(diǎn),,沿翻折到,連接,得到如圖的五棱錐,且.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且到原點(diǎn)的距離為.

(1)求拋物線的方程;

(2)已知點(diǎn),延長交拋物線于點(diǎn),證明:以點(diǎn)為圓心且與直線相切的圓,必與直線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,射影定理可表示為ab·cosCc·cosB.其中ab,c分別為角AB,C的對邊,類比上述定理.寫出對空間四面體性質(zhì)的猜想.

查看答案和解析>>

同步練習(xí)冊答案