已知等比數(shù)列{an}中,a1=3,a4=81,當數(shù)列{bn}滿足bn=log3an,則數(shù)列{
1bnbn+1
}
的前2013項和S2013
 
分析:利用等比數(shù)列的通項公式可得an,進而得到bn,再利用“裂項求和”即可得出.
解答:解:設(shè)等比數(shù)列{an}的公比為q,∵a1=3,a4=81,∴81=3×q3,解得q=3.
an=3n
∴bn=log3an=log33n=n.
1
bnbn+1
=
1
n(n+1)
=
1
n
-
1
n+1

∴Sn=(1-
1
2
)+(
1
2
-
1
3
)+
…+(
1
n
-
1
n+1
)
=1-
1
n+1
=
n
n+1

S2013=
2013
2014

故答案為
2013
2014
點評:本題考查了等比數(shù)列的通項公式、“裂項求和”,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、已知等比數(shù)列{an}的前n項和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項,第3項,第2項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊答案