19.在平行四邊形形ABCD中,已知AB=8,AD=6,∠BAD=$\frac{2π}{3}$,點E,F(xiàn)分別在邊BC,DC上,且BC=3BE,DC=λDF,$\overrightarrow{AE}$•$\overrightarrow{AF}$=16,則λ的值為2.

分析 運用向量的數(shù)量積求得$\overrightarrow{AB}$•$\overrightarrow{AD}$,由題意畫出圖形,把$\overrightarrow{AE}$,$\overrightarrow{AF}$都用含有$\overrightarrow{AB}$,$\overrightarrow{AD}$的式子表示,運用條件$\overrightarrow{AE}$•$\overrightarrow{AF}$=16,展開后化為關(guān)于λ的方程,解方程即可得到所求值.

解答 解:$\overrightarrow{AB}$•$\overrightarrow{AD}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AD}$|•cos$\frac{2π}{3}$
=8•6•(-$\frac{1}{2}$)=-24,
$\overrightarrow{AE}$•$\overrightarrow{AF}$=($\overrightarrow{AB}$+$\overrightarrow{BE}$)•($\overrightarrow{AD}$+$\overrightarrow{DF}$)
=($\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$)•($\overrightarrow{AD}$+$\frac{1}{λ}$$\overrightarrow{DC}$)
=($\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AD}$)•($\overrightarrow{AD}$+$\frac{1}{λ}$$\overrightarrow{AB}$)
=$\frac{1}{3}$$\overrightarrow{AD}$2+$\frac{1}{λ}$$\overrightarrow{AB}$2+(1+$\frac{1}{3λ}$)$\overrightarrow{AB}$•$\overrightarrow{AD}$
=$\frac{1}{3}$•36+$\frac{1}{λ}$•64+(-24)•(1+$\frac{1}{3λ}$)=16,
解得λ=2,
故答案為:2.

點評 本題考查平面向量的數(shù)量積運算,考查了向量加法的三角形法則,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=ex+4x-3的零點所在的區(qū)間為( 。
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知log${\;}_{\frac{2}{3}}$a>1,($\frac{2}{3}$)b>1,2c=3,則( 。
A.a>b>cB.c>b>aC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=Acos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,其中M,P分別是函數(shù)f(x)的圖象與坐標軸的交點,N是函數(shù)f(x)的圖象的一個最低點,若點N,P的橫坐標分別為$\frac{5π}{8}$,$\frac{11π}{8}$,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2$\sqrt{2}$,則下列說法正確的個數(shù)為( 。
①A=±2;
②函數(shù)f(x)在[$\frac{9π}{4}$,$\frac{21π}{8}$]上單調(diào)遞減;
③要得到函數(shù)f(x)的圖象,只需將函數(shù)y=4sinxcosx的圖象向左平移$\frac{π}{8}$個單位.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)連續(xù)函數(shù)f(x)的定義域為R,已知,若函數(shù)f(x)無零點,則f(x)>0或f(x)<0恒成立.
(1)用反證法證明:“若存在實數(shù)x0,使得f(f(x0))=x0,則至少存在一個實數(shù)a,使得f(a)=a”;
(2)若f(x)=ex-$\frac{1}{{e}^{x}}$+x2-2cosx-mx-2,有且僅有一個實數(shù)x0,使得f(f(x0))=x0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知方程$\frac{{x}^{2}}{k-1}$-$\frac{{y}^{2}}{|k|}$=-1表示雙曲線,則實數(shù)k的取值范圍為( 。
A.(-∞,0)∪(0,1)∪(1,+∞)B.(1,+∞)C.(0,1)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,$\frac{{a}_{n}+1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=0,n∈N*.求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知?ABCD中,點E是對角線AC上靠近A的一個三等分點,設(shè)$\overrightarrow{EA}$=a,$\overrightarrow{EB}$=b,則向量$\overrightarrow{BC}$等于( 。
A.2a+bB.-$\frac{1}{2}$a-bC.$\frac{1}{2}$b-2aD.-b-2a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)和拋物線y2=2px(p>0)相交于A、B兩點,直線AB過拋物線的焦點F1,且|AB|=8,橢圓的離心率為$\frac{\sqrt{2}}{2}$.
(I)求橢圓和拋物線的標準方程;
(Ⅱ)是否存在過(-2,0)與拋物線相切且被橢圓截得的弦CD的長恰為$\frac{20\sqrt{2}}{3}$的直線,若不存在.請說明理由;若存在,請求出直線方程.

查看答案和解析>>

同步練習(xí)冊答案