【題目】已知五面體ABCDEF中,四邊形CDEF為矩形,,CD=2DE=2AD=2AB=4,AC=,.
(1)求證:AB平面ADE;
(2)求平面EBC與平面BCF所成的銳二面角的余弦值.
【答案】(1)見解析; (2).
【解析】
(1)根據(jù)勾股定理得,再根據(jù)線面垂直判定定理得結(jié)果,(2)先根據(jù)條件證得直線DE,DA,DC兩兩互相垂直,再建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組解得平面EBC和平面BCF法向量,利用向量數(shù)量積得法向量夾角,最后根據(jù)二面角與向量夾角關(guān)系得結(jié)果.
(1)因?yàn)?/span> ,,所以
因?yàn)樗倪呅?/span>CDEF為矩形,所以,
因?yàn)?/span>,所以,
因?yàn)?/span>,所以
(2)因?yàn)?/span> ,,所以,
由(1)得,所以直線DE,DA,DC兩兩互相垂直,
故以點(diǎn)D為坐標(biāo)原點(diǎn),分別以正方向?yàn)?/span>軸正方向建立空間直角坐標(biāo)系,
則E(0,0,2)A(2,0,0),C(0,4,0),B(2,2,0),F(0,4,2),
設(shè)平面EBC和平面BCF法向量分別為,,
則,所以,
取得,
同理,所以
取得
設(shè)所求角為,則,即所求銳二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),,給定下列命題:
①若方程有兩個(gè)不同的實(shí)數(shù)根,則;
②若方程恰好只有一個(gè)實(shí)數(shù)根,則;
③若,總有恒成立,則;
④若函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù).
則正確命題的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,則輸出的n值為 (參考數(shù)據(jù):,,)
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值來(lái)衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,記其質(zhì)量指標(biāo)值
為,當(dāng)時(shí),產(chǎn)品為一級(jí)品;當(dāng)時(shí),產(chǎn)品為二級(jí)品,當(dāng)時(shí),產(chǎn)品為三級(jí)品,現(xiàn)用兩種新配方(分別稱為配方和配方)做實(shí)驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,
并測(cè)量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面的試驗(yàn)結(jié)果:(以下均視頻率為概率)
配方的頻數(shù)分配表
指標(biāo)值分組 | ||||
頻數(shù) | 10 | 30 | 40 | 20 |
配方的頻數(shù)分配表
指標(biāo)值分組 |
| ||||
頻數(shù) | 5 | 10 | 15 | 40 | 30 |
(Ⅰ)若從配方產(chǎn)品中有放回地隨機(jī)抽取3件,記“抽出的配方產(chǎn)品中至少1件二級(jí)品”為事件,求事件發(fā)生的概率;
(Ⅱ)若兩種新產(chǎn)品的利潤(rùn)率與質(zhì)量指標(biāo)滿足如下關(guān)系:其中,從長(zhǎng)期來(lái)看,投資哪種配方的產(chǎn)品平均利潤(rùn)率較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】玉山一中籃球體育測(cè)試要求學(xué)生完成“立定投籃”和“三步上籃”兩項(xiàng)測(cè)試,“立定投籃”和“三步上籃”各有2次投籃機(jī)會(huì),先進(jìn)行“立定投籃”測(cè)試,如果合格才能參加“三步上籃”測(cè)試.為了節(jié)約時(shí)間,每項(xiàng)測(cè)試只需且必須投中一次即為合格.小華同學(xué)“立定投籃”的命中率為,“三步上籃”的命中率為.假設(shè)小華不放棄任何一次投籃機(jī)會(huì)且每次投籃是否命中相互獨(dú)立.
(1)求小華同學(xué)兩項(xiàng)測(cè)試均合格的概率;
(2)設(shè)測(cè)試過(guò)程中小華投籃次數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)是定義域?yàn)?/span>R的偶函數(shù).當(dāng)x≥0時(shí),,若關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線過(guò)點(diǎn),傾斜角為.
(Ⅰ)求曲線的直角坐標(biāo)方程與直線的參數(shù)方程;
(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓C:離心率為,其短軸長(zhǎng)為2.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如圖,A為橢圓C的左頂點(diǎn),P,Q為橢圓C上兩動(dòng)點(diǎn),直線PO交AQ于E,直線QO交AP于D,直線OP與直線OQ的斜率分別為,,且, ,(為非零實(shí)數(shù)),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com