[ ]
A.-6<a<6 B.0<a≤5 C.a2<25 D.│a│≤6.
科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044
已知橢圓=1的左焦點為F,O為坐標(biāo)原點.
(Ⅰ)求過點O、F,并且與橢圓的左準(zhǔn)線l相切的圓的方程;
(Ⅱ)設(shè)過點F且不與坐標(biāo)軸垂直的直線交橢圓于A、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(廣東卷) 題型:044
在平面直角坐標(biāo)系xOy中,已知圓心在第二象限,半徑為2的圓C與直線y=x相切于坐標(biāo)原點O.橢圓=1與圓C的一個交點到橢圓兩點的距離之和為10.
(1)求圓C的方程.
(2)試探安C上是否存在異于原點的點Q,使Q到橢圓右焦點P的距離等于線段OF的長.若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江西省五校2012屆高三第一次聯(lián)考數(shù)學(xué)文科試題 題型:044
已知橢圓=1(a>b>0)的左、右焦點分別為F1、F2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點P作此圓的切線,切點為T,且|PT|的最小值不小于(a-c).
(1)證明:橢圓上的點到F2的最短距離為a-c;
(2)求橢圓的離心率e的取值范圍;
(3)設(shè)橢圓的短半軸長為1,圓F2與x軸的右交點為Q,過點Q作斜率為k(k>0)的直線l與橢圓相交于A、B兩點,若OA⊥OB,求直線l被圓F2截得的弦長S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求圓C的方程.
(2)試探究圓C上是否存在異于原點的點Q,使Q到橢圓右焦點F的距離等于線段OF的長.若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com