(本題滿分16分)
已知數列{an}滿足Sn+an=2n+1,
(1) 寫出a1, a2, a3,并推測an的表達式;
(2) 用數學歸納法證明所得的結論。
(1) a1=, a2=, a3=, 猜測 an=2- (2)見解析
【解析】解: (1) a1=, a2=, a3=, 猜測 an=2- ……5分
(2) ①由(1)已得當n=1時,命題成立;……8分
②假設n=k時,命題成立,即 ak=2-, ……10分
當n=k+1時, a1+a2+……+ak+ak+1+ak+1=2(k+1)+1,且a1+a2+……+ak=2k+1-ak
∴2k+1-ak+2ak+1=2(k+1)+1=2k+3,
∴2ak+1=2+2-, ak+1=2-, 即當n=k+1時,命題成立. ……15分
根據①②得n∈N+ , an=2-都成立 ……16分
思路分析:第一問利用Sn+an=2n+1,遞推得到a1=, a2=, a3=, 猜測 an=2-
第二問中,1)已得當n=1時,命題成立;
②假設n=k時,命題成立,即 ak=2-,當n=k+1時, a1+a2+……+ak+ak+1+ak+1=2(k+1)+1,且a1+a2+……+ak=2k+1-ak
∴2k+1-ak+2ak+1=2(k+1)+1=2k+3,
∴2ak+1=2+2-, ak+1=2-
綜上可知成立。
科目:高中數學 來源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.
已知函數(,、是常數,且),對定義域內任意(、且),恒有成立.
(1)求函數的解析式,并寫出函數的定義域;
(2)求的取值范圍,使得.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分16分)已知數列的前項和為,且.數列中,,
.(1)求數列的通項公式;(2)若存在常數使數列是等比數列,求數列的通項公式;(3)求證:①;②.
查看答案和解析>>
科目:高中數學 來源:江蘇省私立無錫光華學校2009—2010學年高二第二學期期末考試 題型:解答題
本題滿分16分)已知圓內接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數學卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數
(1)判斷并證明在上的單調性;
(2)若存在,使,則稱為函數的不動點,現(xiàn)已知該函數有且僅有一個不動點,求的值;
(3)若在上恒成立 , 求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com