(本題14分)

如圖,四棱錐中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E為PD的中點

(1)求異面直線PA與CE所成角的大。

(2)(理)求二面角E-AC-D的大小。

    (文)求三棱錐A-CDE的體積。

 

【答案】

(1) (2)理,文

【解析】(1)過E作EF⊥AD交AD于F,則∠CEF是異面直線PA與CE的夾角(3’)

聯(lián)結(jié)CF,在Rt△CEF中,

∴tan∠CEF=,

∴夾角大小為(7’)

(2)(理)過F作FH⊥AC于H,則∠EHF是二面角E-AC-D的平面角(10’)

HF=,tan ∠EHF=

∴二面角E-AC-D的大小為(14’)

注:如構(gòu)造坐標(biāo)系,向量解法相應(yīng)給分

(文)(14’)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年浙江卷)(本題14分)如圖,矩形和梯形所在平面互相垂直,,,,

(Ⅰ)求證:平面

(Ⅱ)當(dāng)的長為何值時,二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題14分)如圖,分別是正方體

的中點.

(1)求證://平面;

(2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題14分)

如圖,四棱錐中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E為PD的中點

(1)求異面直線PA與CE所成角的大;

(2)(理)求二面角E-AC-D的大小。

    (文)求三棱錐A-CDE的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆海南省高二上期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題14分)如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點,口寬EF=4米,高3米,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,(1)求拋物線方程.(2)若將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時,所挖的土最少?

 

查看答案和解析>>

同步練習(xí)冊答案