【題目】已知正四棱錐的底面邊長為,側(cè)棱,E為側(cè)棱PB上一點且,在內(nèi)(包括邊界)任意取一點F,則的取值范圍為__________.
【答案】
【解析】
根據(jù)對稱性可知,,然后根據(jù)可求得最小值,當(dāng)、、三點不共線時,設(shè)平面,根據(jù),或可知,的最大值是或,通過計算比較可得最大值.
如圖:
由可得,
因為點與點關(guān)于平面對稱,所以,
所以,當(dāng)且僅當(dāng)、、三點共線時,取得等號,
因為,又,所以三角形為等邊三角形,所以,
在三角形中,,
所以的最小值為.
根據(jù)對稱性,只研究在三角形內(nèi)(包括邊界)的情形,
當(dāng)、、三點不共線時,設(shè)平面,顯然(當(dāng)重合時等號成立),
又(當(dāng)重合時等號成立),或者(當(dāng)重合時等號成立),
所以的最大值是或,
因為,
所以,
所以,
所以,所以(當(dāng)重合時取得等號),
所以的取值范圍是.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某疾病有甲、乙兩種類型,對甲型患者的有效治療只能通過注射藥物Y,而乙型患者可以服藥物A進行有效治療,對該疾病患者可以通過藥物A的臨床檢驗確定甲型或乙型.檢驗的方法是:如果患者利用藥物A完成第一個療程有效,就可以確定是乙型;否則進行第二個療程,如果完成第二個療程有效,也可以確定是乙型,否則確定是甲型.為了掌握這種疾病患者中甲型、乙型所占比例,隨機抽取100名患者作為樣本通過藥物A進行臨床檢驗,檢驗結(jié)果是:樣本中完成第二個療程有效的患者是完成第一個療程有效的患者的60%,且最終確定為甲型患者的有36人.
(1)根據(jù)檢驗結(jié)果,將頻率視作概率,在利用藥物A完成第一個療程無效的患者中仼選3人,求其中甲型患者恰為2人的概率;
(2)該疾病的患者通過治療,使血漿中某物質(zhì)t的濃度降低到或更低時,就認為已經(jīng)達到治愈指標.為了確定藥物Y對甲型患者的療效,需了解療程次數(shù)x(單位:次)對患者血漿中t的濃度(單位:)的影響.在甲型患者中抽取一個有代表性的樣本,利用藥物Y進行5個療程,每個療程完成后對每個個體抽取相同容量的血漿進行分析,并對療程數(shù)和每個療程后樣本血漿中t的平均濃度的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
3 | 11.0 | 0.46 | 262.5 | 30.1 | 55 | 1.458 |
/span>
上表中,.
①根據(jù)散點圖直接判斷(不必說明理由),與哪一個適宜作為甲型患者血漿中t的平均濃度y關(guān)于療程次數(shù)x的回歸方程類型?并根據(jù)表中數(shù)據(jù)建立y關(guān)于x的回歸方程.
②患者在享受基本醫(yī)療保險及政府專項補助后,自己需承擔(dān)的費用z(單位:元)與x,y的關(guān)系為.在達到治愈指標的前提下,甲型患者完成多少個療程自己承擔(dān)的費用最低?
對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓:()的離心率,左、右焦點分別為,,過,分別作兩條相互垂直的直線,,分別交橢圓于,,,四點,,的交點為,三角形面積的最大值為1.
(1)求橢圓的方程;
(2)當(dāng)四邊形的面積最小時,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下統(tǒng)計表和分布圖取自《清華大學(xué)2019年畢業(yè)生就業(yè)質(zhì)量報告》.
則下列選項錯誤的是( )
A.清華大學(xué)2019年畢業(yè)生中,大多數(shù)本科生選擇繼續(xù)深造,大多數(shù)碩士生選擇就業(yè)
B.清華大學(xué)2019年畢業(yè)生中,碩士生的就業(yè)率比本科生高
C.清華大學(xué)2019年簽三方就業(yè)的畢業(yè)生中,本科生的就業(yè)城市比碩士生的就業(yè)城市分散
D.清華大學(xué)2019年簽三方就業(yè)的畢業(yè)生中,留北京人數(shù)超過一半
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】精準扶貧點用2400元的資金為貧困戶購買良種羊羔,共有肉用山羊、毛用綿羊、產(chǎn)奶山羊三種羊羔,價格均為每只300元,若要求每種羊羔至少買1只,則所有可能的購買方案總數(shù)為( )
A.12B.14C.21D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求的方程;
(2)是否存在直線與相交于兩點,且滿足:①與(為坐標原點)的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com