已知橢圓的一個(gè)焦點(diǎn)為,離心率為.設(shè)是橢圓長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)且斜率為的直線(xiàn)交橢圓于,兩點(diǎn).
(1)求橢圓的方程;
(2)求的最大值.
(1);(2).

試題分析:(1)由題意,,,根據(jù)求出,則橢圓的方程為. (2)設(shè)點(diǎn)),則直線(xiàn)的方程為,聯(lián)立 ,而
,帶入韋達(dá)定理,,則,而, 即 ,則當(dāng)時(shí),的最大值為.
試題解析:(1)由已知,,
,                                 3分
∴ 橢圓的方程為.                                 4分
(2)設(shè)點(diǎn)),則直線(xiàn)的方程為, 2分
 消去,得           4分
設(shè),,則,     6分



                               8分
, 即
∴當(dāng)時(shí),,的最大值為.              10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn)為橢圓右焦點(diǎn),圓與橢圓的一個(gè)公共點(diǎn)為,且直線(xiàn)與圓相切于點(diǎn).

(1)求的值及橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)滿(mǎn)足,其中M、N是橢圓上的點(diǎn),為原點(diǎn),直線(xiàn)OM與ON的斜率之積為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(2011•浙江)設(shè)F1,F(xiàn)2分別為橢圓+y2=1的焦點(diǎn),點(diǎn)A,B在橢圓上,若=5;則點(diǎn)A的坐標(biāo)是 _________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓上的點(diǎn)到直線(xiàn)的最大距離是                

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)F1、F2分別是橢圓的左、右焦點(diǎn),A、B是以O(shè)(O
為坐標(biāo)原點(diǎn))為圓心、|OF1|為半徑的圓與該橢圓左半部分的兩個(gè)交點(diǎn),且△F2AB是正三角形,則此橢圓的離心率為(   )
A.       B.        C.        D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為平面內(nèi)兩定點(diǎn),過(guò)該平面內(nèi)動(dòng)點(diǎn)作直線(xiàn)的垂線(xiàn),垂足為.若,其中為常數(shù),則動(dòng)點(diǎn)的軌跡不可能是(  )
A.圓B.橢圓C.拋物線(xiàn)D.雙曲線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓上任意一點(diǎn)P及點(diǎn),則的最大值為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線(xiàn)與橢圓相交于、兩點(diǎn),若橢圓的離心率為,焦距為2,則線(xiàn)段的長(zhǎng)是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的右焦點(diǎn)為,橢圓軸正半軸交于點(diǎn),與軸正半軸交于,且,則橢圓的方程為(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案