已知動點到點的距離,等于它到直線的距離.

(1)求點的軌跡的方程;

(2)過點任意作互相垂直的兩條直線,分別交曲線于點

設(shè)線段,的中點分別為,求證:直線恒過一個定點;

(3)在(2)的條件下,求面積的最小值

 

【答案】

(Ⅰ)設(shè)動點的坐標(biāo)為,由題意得,,

化簡得,所以點的軌跡的方程為.      

(Ⅱ)設(shè)兩點坐標(biāo)分別為,,則點的坐標(biāo)為.由題意可設(shè)直線的方程為

.

.

因為直線與曲線兩點,所以,.所以點的坐標(biāo)為.

由題知,直線的斜率為,同理可得點的坐標(biāo)為.

當(dāng)時,有,此時直線的斜率.

所以,直線的方程為

整理得.于是,直線恒過定點

當(dāng)時,直線的方程為,也過點

綜上所述,直線恒過定點.        

(Ⅲ),面積.

當(dāng)且僅當(dāng)時,“”成立,所以面積的最小值為

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(14分)已知動點到點的距離與到直線的距離之比為。

(I)求動點的軌跡C的方程;

(Ⅱ)若過點的直線與曲線軸左側(cè)交于不同的兩點,點滿足

     ,求直線軸上的截距的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點到點的距離與到直線的距離之比為

(I)求動點的軌跡C的方程;(Ⅱ)若過點的直線與曲線軸左側(cè)交于不同的兩點,點滿足  ,求直線軸上的截距的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆江蘇鹽城中學(xué)高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

已知動點到點的距離等于它到直線的距離,則點的軌跡方程是       .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省高三5月高考模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知動點到點的距離與到直線的距離之比為定值,記的軌跡為

(1)求的方程,并畫出的簡圖;

(2)點是圓上第一象限內(nèi)的任意一點,過作圓的切線交軌跡,兩點.

(i)證明:;

(ii)求的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市高三高考前沖刺試卷文數(shù) 題型:解答題

(本小題滿分12分)

已知動點到點的距離比它到軸的距離多·

(Ⅰ)求動點的軌跡方程;

(Ⅱ)設(shè)動點的軌跡為,過點的直線與曲線交于兩點,若軸正半軸上存在點使得是以為直角頂點的等腰直角三角形,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊答案