A. | 2 | B. | -2 | C. | 1 | D. | -1 |
分析 通過D為AB的中點(diǎn)可得2$\overrightarrow{PD}$=$\overrightarrow{PA}$+$\overrightarrow{PB}$,利用2$\overrightarrow{PD}+\overrightarrow{PC}=(λ+1)\overrightarrow{PA}+\overrightarrow{PB}$化簡(jiǎn)可得$\overrightarrow{PC}$=λ$\overrightarrow{PA}$,通過△PBA與△PBC的面積相等可得P為AC的中點(diǎn),進(jìn)而可得結(jié)論.
解答 解:∵D為AB的中點(diǎn),
∴2$\overrightarrow{PD}$=$\overrightarrow{PA}$+$\overrightarrow{PB}$,
又∵2$\overrightarrow{PD}+\overrightarrow{PC}=(λ+1)\overrightarrow{PA}+\overrightarrow{PB}$,
∴$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=(λ+1)$\overrightarrow{PA}$+$\overrightarrow{PB}$,
∴$\overrightarrow{PC}$=λ$\overrightarrow{PA}$,
又∵△PBA與△PBC的面積相等,
∴P為AC的中點(diǎn),
即λ=-1,
故選:D.
點(diǎn)評(píng) 本題考查平面向量的基本定理,注意解題方法的積累,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 2或0 | D. | 2或-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com