分析 (Ⅰ)求出導(dǎo)數(shù),求得切線的斜率,可得a=2,再由導(dǎo)數(shù)大于0,得增區(qū)間,導(dǎo)數(shù)小于0,得減區(qū)間;
(Ⅱ)分別求得曲線在兩切點的斜率,由兩直線平行的條件:斜率相等,結(jié)合條件和基本不等式,即可得證.
解答 (Ⅰ)解:f(x)的導(dǎo)數(shù)為$f'(x)=1-\frac{a}{x^2}+\frac{1}{x}=\frac{{{x^2}+x-a}}{x^2}$,x∈(0,+∞),
∵f(x)在點(1,f(1))處的切線與x軸平行,
則f′(1)=2-a=0,∴a=2,
∵$f'(x)=\frac{{{x^2}+x-2}}{x^2}=0$,可得x=1或x=-2(舍),
∴當(dāng)0<x<1時,f′(x)<0;當(dāng)x>1時,f′(x)>0.
∴f(x)的單調(diào)遞減區(qū)間是(0,1),單調(diào)遞增區(qū)間是(1,+∞).
(Ⅱ)證明:依題意:$1-\frac{a}{{{x_1}^2}}+\frac{1}{x_1}=1-\frac{a}{{{x_2}^2}}+\frac{1}{x_2}⇒a(\frac{1}{x_1}+\frac{1}{x_2})=1$,
由于x1>0,x2>0,且x1≠x2,
則有$a=\frac{{{x_1}•{x_2}}}{{{x_1}+{x_2}}}≥2⇒2({x_1}+{x_2})≤{x_1}•{x_2}<{(\frac{{{x_1}+{x_2}}}{2})^2}$,
∴$2({x_1}+{x_2})<{(\frac{{{x_1}+{x_2}}}{2})^2}$⇒x1+x2>8.
點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率和單調(diào)區(qū)間,同時考查兩直線平行的條件:斜率相等,基本不等式的運用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 6 | C. | 3 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “p∨q為真”是“p∧q為真”的充分不必要條件 | |
B. | 若數(shù)據(jù)x1,x2,x3,…,xn的方差為1,則2x1,2x2,2x3,…,2xn的方差為2 | |
C. | 命題“存在x∈R,x2+x+2015>0”的否定是“任意x∈R,x2+x+2015<0” | |
D. | 在區(qū)間[0,π]上隨機(jī)取一個數(shù)x,則事件“sinx+cosx≥$\frac{\sqrt{6}}{2}$”發(fā)生的概率為$\frac{1}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com