在單位圓上有三點A,B,C,設(shè)△ABC三邊長分別為a,b,c,則
a+b+c
sinA+sinB+sinC
=
 
考點:正弦定理
專題:計算題,解三角形
分析:運用正弦定理,得到a=2RsinA,b=2RsinB,c=2RsinC,代入化簡可得所求的值為2R,即外接圓的直徑.
解答: 解:由正弦定理可得,
a
sinA
=
b
sinB
=
c
sinC
=2R(R為外接圓的半徑),
則a=2RsinA,b=2RsinB,c=2RsinC,
a+b+c
sinA+sinB+sinC
=2R=2.
故答案為:2.
點評:本題考查正弦定理及運用,注意變形的運用,以及比值為外接圓的直徑,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(2,0)及圓C:x2+y2-6x+4y+4=0,設(shè)過點P的直線與圓C交于A、B兩點,當(dāng)|AB|=4,求以線段AB為直徑的圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

斜率不存在的直線一定是( 。
A、平行于x軸的直線
B、垂直于x軸的直線
C、垂直于y軸的直線
D、垂直于坐標軸的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若三點A(2,3),B(3,-2),C(
1
2
,m)共線,求m的值;
(2)求斜率為
3
4
,且與坐標軸所圍成的三角形的面積是6的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos(2ωx+φ)+2(ω>0,0<φ<π)的圖象過點M(3,1),且相鄰兩最高點和最低點之間的距離為5.
(1)求f(x)的表達式;
(2)求f(x)在x∈[-
3
2
,1]上的最大值,并求出此時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,若a=2
3
,A=
2
3
π,且sinB+sinC=1.求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=0,an=4an-1+3n-4(n≥2),則通項an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2lnx,求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點A(4,1),B(7,-3),則與
AB
同向的單位向量是
 

查看答案和解析>>

同步練習(xí)冊答案