1.在三棱錐P-ABC中,側(cè)棱PA,PB,PC兩兩垂直,側(cè)面積為2,該三棱錐外接球表面積的最小值為4π.

分析 三棱錐的三條側(cè)棱兩兩垂直,擴展為長方體,二者的外接球是同一個,根據(jù)球的表面積,求出球的直徑,就是長方體的對角線長,設(shè)出三度,利用基本不等式求出三棱錐外接球的直徑的最值,從而得出該三棱錐外接球的表面積的最小值.

解答 解:三棱錐的三條側(cè)棱兩兩垂直,擴展為長方體,二者的外接球是同一個,
因為三棱錐S-ABC的側(cè)面積為2,
設(shè)長方體的三同一點出發(fā)的三條棱長為:a,b,c,
所以$\frac{1}{2}$(SA•SB+SA•SC+SB•SC)=$\frac{1}{2}$(ab+bc+ac)=2,
⇒ab+bc+ac=4,
該三棱錐外接球的直徑2R就其長方體的對角線長,
從而有:(2R)2=a2+b2+c2≥ab+bc+ac=4,當(dāng)且僅當(dāng)a=b=c時取等號.
所以2R≥2⇒R≥1,
則該三棱錐外接球的表面積的最小值為4πR2=4π×12═4π
故答案為:4π

點評 本題是基礎(chǔ)題,考查球的內(nèi)接體知識,基本不等式的應(yīng)用,考查空間想象能力,計算能力,三棱錐擴展為長方體是本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知平面上的動點P與點N(0,1)連線的斜率為k1,線段PN的中點與原點連線的斜率為k2,k1k2=-$\frac{1}{m^2}$(m>1),動點P的軌跡為C.
(1)求曲線C的方程;
(2)恰好存在唯一一個同時滿足以下條件的圓:
①以曲線C的弦AB為直徑;
②過點N;③直徑|AB|=$\sqrt{2}\;|{NB}$|.求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某市環(huán)保部門對市中心每天的環(huán)境污染情況進行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)f(x)與時刻x(時)的關(guān)系為$f(x)=|{\frac{x}{{{x^2}+1}}-a}|+2a+\frac{3}{4}$,x∈[0,24),其中a是與氣象有關(guān)的參數(shù),且$a∈[{0\;,\;\frac{1}{2}}]$.若用每天f(x)的最大值為當(dāng)天的綜合污染指數(shù),并記作M(a).
(1)令t=$\frac{x}{{{x^2}+1}}$,x∈[0,24),求t的取值范圍;
(2)求M(a)的表達式,并規(guī)定當(dāng)M(a)≤2時為綜合污染指數(shù)不超標(biāo),求當(dāng)a在什么范圍內(nèi)時,該市市中心的綜合污染指數(shù)不超標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,AB=2,AC=3,$\overrightarrow{AB}•\overrightarrow{AC}=3$,則BC=( 。
A.$\sqrt{3}$B.$\sqrt{7}$C.$\sqrt{19}$D.$\sqrt{23}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若命題p為真命題,命題q為假命題,則以下為真命題的是( 。
A.p∧qB.p∧(¬q)C.(¬p)∨qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.對于一組向量$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$(n∈N*),令$\overrightarrow{S_n}=\overrightarrow{a_1}+\overrightarrow{a_2}+\overrightarrow{a_3}+…+\overrightarrow{a_n}$,如果存在$\overrightarrow{a_p}$(p∈{1,2,3…,n}),使得|$\overrightarrow{a_p}|≥|\overrightarrow{S_n}-\overrightarrow{a_p}$|,那么稱$\overrightarrow{a_p}$是該向量組的“h向量”.
(1)設(shè)$\overrightarrow{a_n}$=(n,x+n)(n∈N*),若$\overrightarrow{a_3}$是向量組$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$的“h向量”,
求實數(shù)x的取值范圍;
(2)若$\overrightarrow{a_n}=({(\frac{1}{3})^{n-1}},{(-1)^n})$(n∈N*),向量組$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$是否存在“h向量”?
給出你的結(jié)論并說明理由;
(3)已知$\overrightarrow{a_1}、\overrightarrow{a_2}、\overrightarrow{a_3}$均是向量組$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$的“h向量”,其中$\overrightarrow{a_1}$=(sinx,cosx),$\overrightarrow{a_2}$=(2cosx,2sinx).設(shè)在平面直角坐標(biāo)系中有一點列Q1,Q2,Q3,…,Qn滿足:Q1為坐標(biāo)原點,Q2為$\overrightarrow{a_3}$的位置向量的終點,且Q2k+1與Q2k關(guān)于點Q1對稱,Q2k+2與Q2k+1(k∈N*)關(guān)于點Q2對稱,求|$\overrightarrow{{Q_{2013}}{Q_{2014}}}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知正項數(shù)列{an}的前n項和為Sn,奇數(shù)項成公差為1的等差數(shù),當(dāng)n為偶數(shù)時點(an,an+2)在直線y=3x+2上,又知a1=1,a2=2,則數(shù)列{an}的前2n項和S2n等于( 。
A.n2-n-6+3n+1B.$\frac{{3}^{n+1}-3}{2}$
C.$\frac{4{n}^{2}-2n-23+{3}^{2n+1}}{2}$D.$\frac{{n}^{2}-n-3+{3}^{n+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)P為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)在第一象限的一個動點,過點P向兩條漸近線作垂線,垂足分別為A,B,若A,B始終在第一或第二象限內(nèi),則該雙曲線離心率e的取值范圍為($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=1,n∈N+,若an+1=2an+n+1,n∈N+,求數(shù)列的通項an

查看答案和解析>>

同步練習(xí)冊答案