設(shè)正數(shù)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=14,a2=a3-2a1
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an•log2an,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用等比數(shù)列的前n項(xiàng)和公式和通項(xiàng)公式求出首項(xiàng)和公比,由此能求出an=2n
(2)由bn=an•log2an=n•2n.利用錯位相減法能求出數(shù)列{bn}的前n項(xiàng)和Tn
解答: 解:(1)∵正數(shù)等比數(shù)列{an}的前n項(xiàng)和為Sn,S3=14,a2=a3-2a1,
a1(1-q3)
1-q
=14
a1q=a1q2-2a1
q>0

解得a1=2,q=2,
∴an=2×2n-1=2n
(2)∵bn=an•log2an=n•2n
∴Tn=1•2+2•22+3•23+…+n•2n,①
2Tn=1•22+2•23+3•24+…+n•2n+1,②
①-②,得:-Tn=2+22+23+…+2n-n•2n+1
=
2(1-2n)
1-2
-n•2n+1
=2n+1-2-n•2n+1
∴Tn=(n-1)•2n+1+2.
點(diǎn)評:本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,解題時要認(rèn)真審題,注意錯位相減法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD的底面ABCD是菱形,PA=AD=AC=2,PD=
2
PA,△PCD是以CD為底邊的等腰三角形,且點(diǎn)F為PC的中點(diǎn).
(1)求證:PA∥平面BFD;
(2)求二面角C-BF-D的余弦值;
(3)求三棱錐B-CDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
x2-1
x2+2x+1
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
m
=(cosx,sinx),x∈(0,π),
n
=(1,
3
).
(1)若|
m
-
n
|=
5
,求x的值;
(2)設(shè)f(x)=(
m
+
n
)•
n
,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}(an>0)的首項(xiàng)為1,且前n項(xiàng)和Sn滿足
Sn
-
Sn-1
=1(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=
an
2n
(n=1,2,…),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(2x-
π
6
)(x∈[0,π])的單調(diào)減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AB=1,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動.
(Ⅰ)點(diǎn)E為BC的中點(diǎn)時,試判斷EF與平面PAC的位置關(guān)系,并說明理由;
(Ⅱ)證明:無論點(diǎn)E在邊BC的何處,都有PE⊥AF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓長軸在x軸上,離心率e=
2
3
,短軸長為8
5
,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
x+1
,若函數(shù)f(x+a)為奇函數(shù),則a=
 

查看答案和解析>>

同步練習(xí)冊答案