(理)設(shè)f:x→x2是集合A到集合B的映射,如果B={1,2},則A∩B等于

[  ]

A.

B.{1}

C.或{2}

D.或{1}

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿(mǎn)足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱(chēng)f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿(mǎn)足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)設(shè)f(x)是定義在D上的函數(shù),若對(duì)任何實(shí)數(shù)α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,則稱(chēng)f(x)為定義在D上的下凸函數(shù).
(1)試判斷函數(shù)g(x)=2x(x∈R),k(x)=
1x
 (x<0)
是否為各自定義域上的下凸函數(shù),并說(shuō)明理由;
(2)若h(x)=px2(x∈R)是下凸函數(shù),求實(shí)數(shù)p的取值范圍;
(3)已知f(x)是R上的下凸函數(shù),m是給定的正整數(shù),設(shè)f(0)=0,f(m)=2m,記Sf=f(1)+f(2)+f(3)+…+f(m),對(duì)于滿(mǎn)足條件的任意函數(shù)f(x),試求Sf的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿(mǎn)足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱(chēng)f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)(理)若F(x)=mx+數(shù)學(xué)公式,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿(mǎn)足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年上海市十一校高三聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿(mǎn)足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱(chēng)f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)(理)若F(x)=mx+,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿(mǎn)足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(理)設(shè)f(x)是定義在D上的函數(shù),若對(duì)任何實(shí)數(shù)α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,則稱(chēng)f(x)為定義在D上的下凸函數(shù).
(1)試判斷函數(shù)g(x)=2x(x∈R),k(x)=
1
x
 (x<0)
是否為各自定義域上的下凸函數(shù),并說(shuō)明理由;
(2)若h(x)=px2(x∈R)是下凸函數(shù),求實(shí)數(shù)p的取值范圍;
(3)已知f(x)是R上的下凸函數(shù),m是給定的正整數(shù),設(shè)f(0)=0,f(m)=2m,記Sf=f(1)+f(2)+f(3)+…+f(m),對(duì)于滿(mǎn)足條件的任意函數(shù)f(x),試求Sf的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案