1.若集合M={x|x2>4},N={x|1<x≤3},則N∩(∁RM)=( 。
A.{x|1<x≤2}B.{x|-2≤x≤2}C.{x|-2≤x<1}D.{x|-2≤x≤3}

分析 求出集合M,然后進(jìn)行集合的補(bǔ)集、交集運(yùn)算即可.

解答 解:M={x|x>2,或x<-2},N={x|1<x≤3};
∴∁RM={-2≤x≤2};
∴N∩(∁RM)={x|1<x≤2}.
故選A.

點(diǎn)評(píng) 考查解一元二次不等式,描述法表示集合,以及補(bǔ)集、交集的運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.?dāng)?shù)列{an}的通項(xiàng)公式an=$\frac{1}{\sqrt{n+1}+\sqrt{n}}$,它的前n項(xiàng)和為9,則n=99.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的各條棱中,最長(zhǎng)的棱的長(zhǎng)度為( 。
A.2$\sqrt{2}$B.$\sqrt{6}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,圓O與x軸的正半軸的交點(diǎn)為A,點(diǎn)C、B在圓O上,且點(diǎn)C位于第一象限,點(diǎn)B的坐標(biāo)為($\frac{12}{13}$,-$\frac{5}{13}$),∠AOC=α,若|BC|=1,則$\sqrt{3}$cos2$\frac{α}{2}$-sin$\frac{α}{2}$cos$\frac{α}{2}$-$\frac{\sqrt{3}}{2}$的值為$\frac{5}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知正項(xiàng)等比數(shù)列{an}滿足:1na1+1na3=4,1na4+1na6=10,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記Sn=1na1+1na2+…+1nan如果數(shù)列{bn}滿足:${b_n}=\frac{1}{{2{S_n}}}$,設(shè)${C_n}=({b_1}+{b_2}+…+{b_n}){(\frac{2}{3})^n}$,求Cn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.過(guò)點(diǎn)P(-2,2)作直線l,使直線l與兩坐標(biāo)軸在第二象限內(nèi)圍成的三角形的面積為S,且這樣的直線l有且僅有一條,則直線l的方程是x-y+4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.直線y=ax+b通過(guò)第一、二、三象限,則圓(x+a)2+(y+b)2=r2(r>0)的圓心位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若函數(shù)f(x)=a+|x|+log2(x2+2)有且只有一個(gè)零點(diǎn),則實(shí)數(shù)a的值是(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知傾斜角為45°的直線l過(guò)點(diǎn)A(1,-2)和點(diǎn)B,點(diǎn)B在第一象限,|AB|=3$\sqrt{2}$.
(1)求點(diǎn)B的坐標(biāo);
(2)若直線l與兩平行直線l1:3x-4y+8=0和l2:3x-4y+c=0相交于E、F兩點(diǎn),且|EF|=15$\sqrt{2}$,求實(shí)數(shù)c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案