【題目】已知圓的圓心為原點(diǎn),其半徑與橢圓的左焦點(diǎn)和上頂點(diǎn)的連線線段長(zhǎng)度相等.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓右焦點(diǎn)的動(dòng)直線(其斜率不為0)交圓于兩點(diǎn),試探究在軸正半軸上是否存在定點(diǎn),使得直線與的斜率之和為0?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(2)當(dāng)點(diǎn)為時(shí),
【解析】分析:(1)根據(jù)題意,求出圓的標(biāo)準(zhǔn)方程;(2)假設(shè)存在符合條件的點(diǎn).設(shè),,,當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為.
由得,利用根與系數(shù)關(guān)系表示
可得,斜率不存在也滿足,說(shuō)明存在符合條件的點(diǎn).
詳解:(1)由題知,橢圓的左焦點(diǎn)為,上頂點(diǎn)為,
故圓的半徑,
所以圓的標(biāo)準(zhǔn)方程為.
(2)假設(shè)存在符合條件的點(diǎn).
設(shè),,,
當(dāng)直線的斜率存在時(shí),
設(shè)直線的方程為.
由
得,
所以,.
由,得,
即
.
即.
當(dāng)直線的斜率不存在時(shí),直線的方程為,與圓的交點(diǎn)坐標(biāo)分別為,,顯然滿足.
所以當(dāng)點(diǎn)為時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是( )
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解學(xué)生考試時(shí)的緊張程度,現(xiàn)對(duì)100名同學(xué)進(jìn)行評(píng)估,打分區(qū)間為,得到頻率分布直方圖如下,其中成等差數(shù)列,且.
(1)求的值;
(2)現(xiàn)采用分層抽樣的方式從緊張度值在,中共抽取5名同學(xué),再?gòu)倪@5名同學(xué)中隨機(jī)抽取2人,求至少有一名同學(xué)是緊張度值在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《最強(qiáng)大腦》是江蘇衛(wèi)視引進(jìn)德國(guó)節(jié)目《SuperBrain》而推出的大型科學(xué)競(jìng)技真人秀節(jié)目.節(jié)目籌備組透露挑選選手的方式:不但要對(duì)空間感知、照相式記憶進(jìn)行考核,而且要讓選手經(jīng)過(guò)名校最權(quán)威的腦力測(cè)試,120分以上才有機(jī)會(huì)入圍.某重點(diǎn)高校準(zhǔn)備調(diào)查腦力測(cè)試成績(jī)是否與性別有關(guān),在該高校隨機(jī)抽取男、女學(xué)生各100名,然后對(duì)這200名學(xué)生進(jìn)行腦力測(cè)試.規(guī)定:分?jǐn)?shù)不小于120分為“入圍學(xué)生”,分?jǐn)?shù)小于120分為“未入圍學(xué)生”.已知男生入圍24人,女生未入圍80人.
(1)根據(jù)題意,填寫(xiě)下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認(rèn)為腦力測(cè)試后是否為“入圍學(xué)生”與性別有關(guān);
性別 | 入圍人數(shù) | 未入圍人數(shù) | 總計(jì) |
男生 | 24 | ||
女生 | 80 | ||
總計(jì) |
(2)用分層抽樣的方法從“入圍學(xué)生”中隨機(jī)抽取11名學(xué)生,然后再?gòu)倪@11名學(xué)生中抽取3名參加某期《最強(qiáng)大腦》,設(shè)抽到的3名學(xué)生中女生的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,拋物線的方程為,以點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程為,與軸交于點(diǎn).
(1)求直線的直角坐標(biāo)方程,點(diǎn)的極坐標(biāo);
(2)設(shè)與 交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)若關(guān)于的不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直線PB與CD所成角的大小為,求BC的長(zhǎng);
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在創(chuàng)建“全國(guó)文明衛(wèi)生城”過(guò)程中,某市“創(chuàng)城辦”為了調(diào)查市民對(duì)創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識(shí)問(wèn)卷調(diào)查(一位市民只能參加一次).通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的100人的得分(滿分100分)統(tǒng)計(jì)結(jié)果如下表所示:
(I)由頻數(shù)分布表可以大致認(rèn)為,此次問(wèn)卷調(diào)查的得分Z服從正態(tài)分布近似為這100人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求P(37<Z≤79);
(II)在(I)的條件下,“創(chuàng)城辦”為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
①得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);
②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:
現(xiàn)有市民甲參加此次問(wèn)卷調(diào)查,記 (單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列與數(shù)學(xué)期望.
附:參考數(shù)據(jù)與公式:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com