在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為(θ為參數(shù)),試求直線l與曲線C的普通方程,并求出它們的公共點(diǎn)的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線與C的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極坐標(biāo)建立極坐標(biāo)系,求過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的極坐標(biāo)方程為,直線的參數(shù)方程為
(為參數(shù)),點(diǎn)的極坐標(biāo)為,設(shè)直線與圓交于點(diǎn)、.
(1)寫出圓的直角坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,動(dòng)點(diǎn)P(ρ,θ)運(yùn)動(dòng)時(shí),ρ與成反比,動(dòng)點(diǎn)P的軌跡經(jīng)過點(diǎn)(2,0).
(1)求動(dòng)點(diǎn)P的軌跡的極坐標(biāo)方程;
(2)將(1)中極坐標(biāo)方程化為直角坐標(biāo)方程,并指出軌跡是何種曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn),直線的極坐標(biāo)方程為.
(1)判斷點(diǎn)與直線l的位置關(guān)系,說明理由;
(2)設(shè)直線與曲線C的兩個(gè)交點(diǎn)為A、B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中軸的正半軸重合,且兩坐標(biāo)系有相同的長度單位,圓C的參數(shù)方程為(為參數(shù)),點(diǎn)Q的極坐標(biāo)為。
(1)化圓C的參數(shù)方程為極坐標(biāo)方程;
(2)若直線過點(diǎn)Q且與圓C交于M,N兩點(diǎn),求當(dāng)弦MN的長度為最小時(shí),直線的直角坐標(biāo)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,以為極點(diǎn),軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為:(為參數(shù)),兩曲線相交于兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,設(shè)圓ρ=3上的點(diǎn)到直線ρ(cosθ+sinθ)=2的距離為d.求d的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com