已知點(diǎn)、直線過點(diǎn),且與線段相交,則直線的斜率的取值范圍是 .
或
【解析】
試題分析:因?yàn)楫嫵鰣D形,由題意得 所求直線l的斜率k滿足 k≥kPB 或 k≤kPA,用直線的斜率公式求出kPB 和kPA 的值,解不等式求出直線l的斜率k的取值范圍.即
如圖所示:由題意得,所求直線l的斜率k滿足 k≥kPB 或 k≤kPA,
即 k≥=,或 k≤∴k≥,或k≤-4,
故答案為:k≥或k≤-4.
考點(diǎn):本題主要是考查直線的傾斜角與斜率的關(guān)系的運(yùn)用。
點(diǎn)評:解決該試題的關(guān)鍵是理解過定點(diǎn)的直線,在旋轉(zhuǎn)過程中,要滿足有交點(diǎn),則傾斜家的變化情況,結(jié)合正切函數(shù)圖形得到斜率的范圍。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
y2 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆福建省高一寒假作業(yè)2數(shù)學(xué)試卷(解析版) 題型:選擇題
已知點(diǎn)、直線過點(diǎn),且與線段AB相交,則直線的斜率的取值范圍是 ( )
A.或 B.或 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三第五次階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知點(diǎn)(),過點(diǎn)作拋物線的切線,切點(diǎn)分別為、(其中).
(Ⅰ)若,求與的值;
(Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;
(Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。
中∵直線與曲線相切,且過點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值
(Ⅰ)由可得,. ------1分
∵直線與曲線相切,且過點(diǎn),∴,即,
∴,或, --------------------3分
同理可得:,或----------------4分
∵,∴,. -----------------5分
(Ⅱ)由(Ⅰ)知,,,則的斜率,
∴直線的方程為:,又,
∴,即. -----------------7分
∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分
故圓的面積為. --------------------9分
(Ⅲ)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即, ………10分
∴
,
當(dāng)且僅當(dāng),即,時取等號.
故圓面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com