精英家教網 > 高中數學 > 題目詳情

【題目】二手車經銷商小王對其所經營的某一型號二手汽車的使用年數x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如表的對應數據:

使用年數

2

4

6

8

10

售價

16

13

9.5

7

4.5


(1)試求y關于x的回歸直線方程;(參考公式: = =y﹣
(2)已知每輛該型號汽車的收購價格為w=0.01x3﹣0.09x2﹣1.45x+17.2萬元,根據(1)中所求的回歸方程,預測x為何值時,小王銷售一輛該型號汽車所獲得的利潤L(x)最大?(利潤=售價﹣收購價)

【答案】
(1)解:由已知: , ,

,

所求線性回歸直線方程為


(2)解:L(x)=y﹣w=﹣1.45x+18.7﹣(0.01x3﹣0.09x2﹣1.45x+17.2)=﹣0.01x3+0.09x2+1.5(0<x≤10)

L′(x)=﹣0.03x2+0.18x=﹣0.03x(x﹣6)

x∈(0,6)時,L′(x)>0,L(x)單調遞增,x∈(6,10]時,L′(x)<0,L(x)單調遞減

所以預測x=6時,銷售一輛該型號汽車所獲得的利潤L(x)最大.


【解析】(1)由表中數據計算b,a,即可寫出回歸直線方程;(2)寫出利潤函數L(x)=y﹣w,利用導數求出x=6時L(x)取得最大值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,E , F分別為棱AB , CC1的中點,則在平面ADD1A1內且與平面D1EF平行的直線( )

A.不存在
B.有1條
C.有2條
D.有無數條

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知| |=4,| |=3,(2 ﹣3 )(2 + )=61.
的夾角;
②求| + |和| |.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的周長為 +1,且sinA+sinB= sinC
(I)求邊AB的長;
(Ⅱ)若△ABC的面積為 sinC,求角C的度數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知隨機變量X服從正態(tài)分布N(μ,σ2),且P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣σ<X≤μ+σ)=0.6826,若μ=4,σ=1,則P(5<X<6)=(
A.0.1358
B.0.1359
C.0.2716
D.0.2718

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設不等式組 表示的平面區(qū)域為D,在區(qū)域D內隨機取一個點,則此點到坐標原點的距離大于2的概率是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若關于x的不等式(ax+1)(ex﹣aex)≥0在(0,+∞)上恒成立,則實數a的取值范圍是(
A.(﹣∞,1]
B.[0,1]
C.
D.[0,e]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題p:實數滿足x2﹣4ax+3a2<0,a≠0;命題q:實數滿足 ≥0.
(1)若a=1,p∧q為真命題,求x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=a2x﹣2x定義域為R的奇函數.
(1)求實數a的值;
(2)判斷函數f(x)在R上的單調性,并利用函數單調性的定義證明;
(3)若不等式f(9x+1)+f(t﹣23x+5)>0在在R上恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案