設(shè)橢圓E:=1()過點(diǎn)M(2,), N(,1),為坐標(biāo)原點(diǎn)

(I)求橢圓E的方程;

(II)是否存在以原點(diǎn)為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程;若不存在,說明理由。

 

【答案】

(I)橢圓E的方程為;(II)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且 

【解析】

試題分析:(I)將點(diǎn)M(2,) ,N(,1)的坐標(biāo)代入橢圓的方程即得一方程組:解這個(gè)方程組得,從而得橢圓E的方程為 

(II)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且 設(shè)該圓的切線方程為,聯(lián)立方程組,利用韋達(dá)定理及找到k與m間的關(guān)系式,再利用直線與圓相切,看看能否求出這樣的圓來,若能求出這樣的圓,則說明存在,若不能求出這樣的圓,則說明不存在

試題解析: (I)因?yàn)闄E圓E: (a,b>0)過M(2,) ,N(,1)兩點(diǎn),

所以解得所以橢圓E的方程為     4分

(II)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且,設(shè)該圓的切線方程為解方程組,即   ,

則△=,即

,  7分

要使,需使,即,

所以,所以,所以,

所以,即,                  9分

因?yàn)橹本為圓心在原點(diǎn)的圓的一條切線,所以圓的半徑為,,,

所求的圓為,                       11分

此時(shí)圓的切線都滿足,

而當(dāng)切線的斜率不存在時(shí)切線為與橢圓的兩個(gè)交點(diǎn)為滿足,                    12分 

綜上, 存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且 

                                13分

考點(diǎn):1、橢圓的方程;2、直線與圓錐曲線的位置關(guān)系

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山二模)已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)交點(diǎn)為F1(-
3
,0)
,而且過點(diǎn)H(
3
,
1
2
)

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E的上下頂點(diǎn)分別為A1,A2,P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2分別交x軸于點(diǎn)N,M,若直線OT與過點(diǎn)M,N的圓G相切,切點(diǎn)為T.證明:線段OT的長為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A組:直角坐標(biāo)系xoy中,已知中心在原點(diǎn),離心率為
1
2
的橢圓E的一個(gè)焦點(diǎn)為圓C:x2+y2-4x+2=0的圓心.
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上一點(diǎn),過P作兩條斜率之積為
1
2
的直線l1,l2.當(dāng)直線l1,l2都與圓C相切時(shí),求P的坐標(biāo).
B組:如圖,在平面直角坐標(biāo)系xoy中,橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0).已知點(diǎn)(1,e)和(e,
3
2
)
都在橢圓上,其中e為橢圓離心率.
(1)求橢圓的方程;
(2)設(shè)A,B是橢圓上位于x軸上方的兩點(diǎn),且直線AF1與直線BF2平行,AF2與BF1交于點(diǎn)P,若AF1-BF2=
6
2
,求直線AF1的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

設(shè)橢圓E: =1(a,b>0)過M(2,),N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),

(I)求橢圓E的方程;

(II)是否存在圓心的原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省白鷺洲中學(xué)09-10學(xué)年高二下學(xué)期期中考試(理) 題型:解答題

 設(shè)橢圓E: )過,兩點(diǎn),為坐標(biāo)原點(diǎn),

(1)求橢圓的方程;

(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓恒有兩個(gè)交點(diǎn)?若存在,寫出該圓的方程,并求的取值范圍,若不存在說明理由.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案