已知函數(shù)f (x)=sin2ωx+
3
sinωx cosωx,x∈R,又f (α)=-
1
2
,f (β)=
1
2
,若|α-β|的最小值為
4
,則正數(shù)ω的值為
 
分析:先根據(jù)三角函數(shù)的二倍角公式將函數(shù)f(x)進(jìn)行化簡,再由f (α)=-
1
2
,f (β)=
1
2
,若|α-β|的最小值為
4
,可判斷函數(shù)f(x)的最小正周期,再結(jié)合最小正周期的求法可得到答案.
解答:解:∵f (x)=sin2ωx+
3
sinωxcosωx=sin(2ωx-
π
6
)+
1
2

∵f (α)=-
1
2
,f (β)=
1
2
,若|α-β|的最小值為
4
,
∴函數(shù)f(x)的最小正周期T=3π
2w
=3π
∴ω=
1
3

故答案為:
1
3
點(diǎn)評:本題主要考查三角函數(shù)的二倍角公式、最小正周期的求法.考查基礎(chǔ)知識的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案