已知橢圓的離心率為,橢圓上的點(diǎn)到右焦點(diǎn)F的最近距離為2,若橢圓C與x軸交于A、B兩點(diǎn),M是橢圓C上異于A、B的任意一點(diǎn),直線MA交直線于G點(diǎn),直線MB交直線于H點(diǎn)。
(1)求橢圓C的方程;
(2)試探求以GH為直徑的圓是否恒經(jīng)過(guò)x軸上的定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)的坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由。
(Ⅰ)由題意得
.
橢圓的方程為:
(Ⅱ)記直線、的斜率分別為、,設(shè)的坐標(biāo)分別為,,,.
在橢圓上,所以,
設(shè),則.
,又.
.
因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823211334635402.png" style="vertical-align:middle;" />的中點(diǎn)為,所以,以為直徑的圓的方程為:.
,得,
,將兩點(diǎn)代入檢驗(yàn)恒成立.
所以,以為直徑的圓恒過(guò)軸上的定點(diǎn)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,以原點(diǎn)為圓點(diǎn),橢圓的短半軸為半徑的圓與直線x-y+=0相切。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連接PB交隨圓C于另一點(diǎn)E,證明直線AE與x軸相交于定點(diǎn)Q;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線l:與橢圓相交A,B兩點(diǎn),點(diǎn)C是橢圓上的動(dòng)點(diǎn),則面積的最大值為              。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,一個(gè)焦點(diǎn)為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線交橢圓兩點(diǎn),若點(diǎn)都在以點(diǎn)為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知焦點(diǎn)在軸上橢圓的長(zhǎng)軸的端點(diǎn)分別為為橢圓的中心,為右焦點(diǎn),且,離心率。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)記橢圓的上頂點(diǎn)為,直線交橢圓于兩點(diǎn),問(wèn):是否存在直線,使點(diǎn)恰好為的垂心?若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖橢圓的右頂點(diǎn)是,上下兩個(gè)頂點(diǎn)分別為,四邊形是矩形(為原點(diǎn)),點(diǎn)分別為線段的中點(diǎn).
(Ⅰ)證明:直線與直線的交點(diǎn)在橢圓上;
(Ⅱ)若過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),關(guān)于軸的對(duì)稱點(diǎn)(不共線),問(wèn):直線是否經(jīng)過(guò)軸上一定點(diǎn),如果是,求這個(gè)定點(diǎn)的坐標(biāo),如果不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且經(jīng)過(guò)、三點(diǎn).
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于、兩點(diǎn).
①若,求的長(zhǎng);
②證明:直線與直線的交點(diǎn)在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)點(diǎn)是橢圓上一點(diǎn),分別是橢圓的左、右焦點(diǎn),的內(nèi)心,若,則該橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的左、右焦點(diǎn)分別為,若橢圓上存在點(diǎn)(異于長(zhǎng)軸的端點(diǎn)),使得,則該橢圓離心率的取值范圍是    

查看答案和解析>>

同步練習(xí)冊(cè)答案