精英家教網 > 高中數學 > 題目詳情

【題目】某企業(yè)生產甲乙兩種產品,已知生產每噸甲產品要用A原料3噸,B原料2噸;生產每噸乙產品要用A原料1噸,B原料3噸,銷售每噸甲產品可獲得利潤5萬元,銷售每噸乙產品可獲得利潤3萬元。該企業(yè)在一個生產周期消耗A原料不超過13噸,B原料不超過18噸。問該企業(yè)如何安排可獲得最大利潤,最大利潤是多少?

【答案】生產甲產品3噸,生產乙產品4噸時,可獲得最大利潤為27萬元

【解析】試題分析:生產甲產品噸,生產乙產品噸,根據兩種原理的限量可得有關系: ,作出可行域,平移目標函數,找到最優(yōu)解,即可求得大利潤及如何獲得最大利潤.

試題解析:設生產甲產品噸,生產乙產品噸,則有關系:

則目標函數,作出可行域(如圖),

平移直線,過點B時取最大值。

即B(3,4),

所以當時,

故生產甲產品3噸,生產乙產品4噸時,可獲得最大利潤為27萬元。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2cos,直線l的參數方程為 (t為參數),直線l與圓C交于A,B兩點,P是圓C上不同于A,B的任意一點.

(1)求圓心的極坐標;

(2)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三邊是連續(xù)的三個自然數.

(Ⅰ求最小邊的取值范圍;

(Ⅱ是否存在這樣的,使得其最大內角是最小內角的兩倍?若存在,試求出這個三角形的三邊;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有4個人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數為1或2的人去參加甲游戲,擲出點數大于2的人去參加乙游戲.

(1) 求出4個人中恰有2個人去 參加甲游戲的概率;

(2)求這4個人中去參加甲游戲人數大于去參加乙游戲的人數的概率;

(3)用分別表示這4個人中去參加甲、乙游戲的人數,記,求隨機變量的分布列與數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點是直線上一動點,PA、PB是圓的兩條切線,A、B為切點,若四邊形PACB面積的最小值是2,則的值是

A. B. C. 2 D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某公園摩天輪的半徑為,圓心距地面的高度為,摩天輪做勻速轉動,每轉一圈,摩天輪上的點的起始位置在最低點處.

(1)已知在時刻距離地面的高度,(其中),求距離地面的高度;

(2)當離地面以上時,可以看到公園的全貌,求轉一圈中有多少時間可以看到公園的全貌?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校從參加高一年級期中考試的學生中抽出名學生,并統(tǒng)計了她們的數學成績(成績均為整數且滿分為分),數學成績分組及各組頻數如下:

樣本頻率分布表:

分組

頻數

頻率

合計

(1)在給出的樣本頻率分布表中,求的值;

(2)估計成績在分以上(含分)學生的比例;

(3)為了幫助成績差的學生提高數學成績,學校決定成立“二幫一”小組,即從成績在的學生中選兩位同學,共同幫助成績在中的某一位同學.已知甲同學的成績?yōu)?/span>分,乙同學的成績?yōu)?/span>分,求甲、乙兩同學恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系 中,過橢圓 右焦點 的直線交橢圓兩點 , 的中點,且 的斜率為 .

(1)求橢圓的標準方程;

(2)設過點 的直線 (不與坐標軸垂直)與橢圓交于 兩點,問:在 軸上是否存在定點 ,使得 為定值?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)= ,則函數y=|f(x)|﹣ 的零點個數為

查看答案和解析>>

同步練習冊答案