試問(wèn)能否找到一條斜率為k(k≠0)的直線l與橢圓交于兩個(gè)不同點(diǎn)M,N,且使M,N,且使M,N到點(diǎn)A(0,1)的距離相等,若存在,試求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
【答案】分析:設(shè)直線l:y=kx+m為滿足條件的直線,再設(shè)P為MN的中點(diǎn),欲滿足條件,只要AP⊥MN即可.由得(1+3k2)x2+6mkx+3m2-3=0.然后利用韋達(dá)定理和根與系數(shù)的關(guān)系能夠推導(dǎo)出當(dāng)k∈(-1,0)∪(0,1)時(shí),存在滿足條件的直線l.
解答:解:設(shè)直線l:y=kx+m為滿足條件的直線,再設(shè)P為MN的中點(diǎn),欲滿足條件,只要AP⊥MN即可
得(1+3k2)x2+6mkx+3m2-3=0.
設(shè)M(x1,y1),N(x2,y2),
,∴.∵AP⊥MN∴=,

由△=36m2k2-4(1+3k2)(3m2-3)=9(1+3k2).(1-k2)>0,
得-1<k<1,且k≠0.
故當(dāng)k∈(-1,0)∪(0,1)時(shí),存在滿足條件的直線l.
點(diǎn)評(píng):本題考查直線和圓錐曲線的綜合運(yùn)用,解題時(shí)要合理地進(jìn)行等價(jià)轉(zhuǎn)化,注意韋達(dá)定理和根與系數(shù)的關(guān)系的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

試問(wèn)能否找到一條斜率為k(k≠0)的直線l與橢圓
x23
+y2=1
交于兩個(gè)不同點(diǎn)M,N,且使M,N,且使M,N到點(diǎn)A(0,1)的距離相等,若存在,試求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案