精英家教網 > 高中數學 > 題目詳情
函數y=log2(x+3)-1(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中mn>0,則+的最小值為( )
A.6
B.8
C.10
D.12
【答案】分析:根據對數函數的性質先求出A的坐標,代入直線方程可得m、n的關系,再利用1的代換結合均值不等式求解即可.
解答:解:∵x=-2時,y=log21-1=-1,
∴函數y=log2(x+3)-1(a>0,a≠1)的圖象恒過定點(-2,-1)即A(-2,-1),
∵點A在直線mx+ny+1=0上,
∴-2m-n+1=0,即2m+n=1,
∵mn>0,
∴m>0,n>0,+=+=2+++2≥4+2•=8,
當且僅當m=,n=時取等號.
故選B.
點評:本題考查了對數函數的性質和均值不等式等知識點,運用了整體代換思想,是高考考查的重點內容.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

函數y=log2(1+x)+
2-x
的定義域為(  )
A、(0,2)
B、(-1,2]
C、(-1,2)
D、[0,2]

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題:
①函數y=-
2
x
在其定義域上是增函數;        
②函數y=
x2(x-1)
x-1
是偶函數;
③函數y=log2(x-1)的圖象可由y=log2(x+1)的圖象向右平移2個單位得到;
④若2a=3b<1,則a<b<0;
則上述正確命題的序號是
③④
③④

查看答案和解析>>

科目:高中數學 來源: 題型:

為了得到函數y=log2(x+2)的圖象,只需把函數y=log2(x-1)的圖象向(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=log2(x+1)+1(x>0)的反函數是
y=2x-1-1(x>1)
y=2x-1-1(x>1)

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=log2(x+1)的圖象與y=f(x)的圖象關于直線x=1對稱,則f(x)的表達式是
y=log2(3-x)(x<3)
y=log2(3-x)(x<3)

查看答案和解析>>

同步練習冊答案