(本小題滿分14分)如圖,在平面直角坐標(biāo)系xOy中,橢圓C的中心在坐標(biāo)原點(diǎn)O,右焦點(diǎn)為F.若C的右準(zhǔn)線l的方程為x=4,離心率e=.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P為直線l上一動點(diǎn),且在x軸上方.圓M經(jīng)過O、F、P三點(diǎn),求當(dāng)圓心M到x軸的距離最小時圓M的方程.
解:(1)由題意,設(shè)橢圓C的標(biāo)準(zhǔn)方程為 則
得:,,
所以所求橢圓C的方程為
(2)方法一、由(1)知,由題意可設(shè)
線段的垂直平分線方程為 ①
因?yàn)榫段的中心為,斜率為.
所以線段的垂直平分線方程為
即: ②
聯(lián)立①②,解得
即:圓心
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e1/e/xvlmm1.gif" style="vertical-align:middle;" />,所以,當(dāng)且僅當(dāng) 即:時,
圓心到軸的距離最小,此時圓心為,半徑為,
故所求圓的方程為.
方法二:由(1)知F(2,0)由題可設(shè)的方程為
將點(diǎn)F、P的坐標(biāo)代入得解得:
所以圓心的坐標(biāo)為,即:
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e1/e/xvlmm1.gif" style="vertical-align:middle;" />,所以,當(dāng)且僅當(dāng) 即:時,
所以圓心到軸的距離最小,此時
故所求圓的方程為:
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分) 設(shè)拋物線C1:x2=4y的焦點(diǎn)為F,曲線C2與C1關(guān)于原點(diǎn)對稱.
(Ⅰ) 求曲線C2的方程;
(Ⅱ) 曲線C2上是否存在一點(diǎn)P(異于原點(diǎn)),過點(diǎn)P作C1的兩條切線PA,PB,切點(diǎn)A,B,滿足| AB |是 | FA | 與 | FB | 的等差中項(xiàng)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓,的離心率為,直線與以原點(diǎn)為圓心,以橢圓的短半軸長為半徑的圓相切。
、求橢圓的方程;
、過點(diǎn)的直線(斜率存在時)與橢圓交于、兩點(diǎn),設(shè)為橢圓與軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知離心率為的橢圓上的點(diǎn)到
左焦點(diǎn)的最長距離為
(1)求橢圓的方程;
(2)如圖,過橢圓的左焦點(diǎn)任作一條與兩坐標(biāo)軸都不垂直的弦,若點(diǎn)在軸上,且使得為的一條內(nèi)角平分線,則稱點(diǎn)為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,已知直線的參數(shù)方程是(為參數(shù)),圓的極坐標(biāo)方程是,則直線被圓截得的弦長為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知方向向量為v=(1,)的直線l過點(diǎn)(0,-2)和橢圓C:
的焦點(diǎn),且橢圓C的中心關(guān)于直線l的對稱點(diǎn)在橢圓C的右準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;(Ⅱ)是否存在過點(diǎn)E(-2,0)的直線m交橢圓C于點(diǎn)M、N,滿足cot∠MON ≠0(O為原點(diǎn)).若存在,求直線m的方程;若不存
在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知過拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn).求證:(1)x1x2為定值;(2)+為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com