9.已知某公司生產(chǎn)一種儀器元件,年固定成本為20萬(wàn)元,每生產(chǎn)1萬(wàn)件儀器元件需另外投入8.1萬(wàn)元,設(shè)該公司一年內(nèi)共生產(chǎn)此種儀器元件x萬(wàn)件并全部銷售完,每萬(wàn)件的銷售收入為f(x)萬(wàn)元,且
f(x)=$\left\{\begin{array}{l}32.4-\frac{1}{10}{x^2}(0<x≤10)\\ \frac{324}{x}-\frac{1000}{x^2}(x>10)\end{array}$
(Ⅰ)寫(xiě)出年利潤(rùn)y(萬(wàn)元)關(guān)于年產(chǎn)品x(萬(wàn)件)的函數(shù)解析式;
(Ⅱ)當(dāng)年產(chǎn)量為多少萬(wàn)件時(shí),該公司生產(chǎn)此種儀器元件所獲年利潤(rùn)最大?
(注:年利潤(rùn)=年銷售收入-年總成本)

分析 (Ⅰ)通過(guò)當(dāng)0<x≤10時(shí),當(dāng)x>10時(shí),寫(xiě)出年利潤(rùn)y(萬(wàn)元)關(guān)于年產(chǎn)品x(萬(wàn)件)的函數(shù)解析式;
(Ⅱ)①當(dāng)0<x≤10時(shí),通過(guò)求解函數(shù)的導(dǎo)數(shù)求解函數(shù)的最值;②當(dāng)x>10時(shí),利用基本不等式求解函數(shù)的最值.即可得到結(jié)果.

解答 解:(Ⅰ)當(dāng)0<x≤10時(shí),$y=xf(x)-(20+8.1x)=24.3x-\frac{x^3}{10}-20$…(3分)
當(dāng)x>10時(shí),$y=xf(x)-(20+8.1x)=304-\frac{1000}{x}-8.1x$…(5分)
所以$y=\left\{\begin{array}{l}24.3x-\frac{x^3}{10}-20,(0<x≤10)\\<br/>304-\frac{1000}{x}-8.1x,(x>10)<br/>\end{array}\right.$…6分
(Ⅱ)①當(dāng)0<x≤10時(shí),由$y'=24.3-\frac{{3{x^2}}}{10}=0$,得x=9(負(fù)值舍去).
當(dāng)x∈(0,9)時(shí),y'>0;當(dāng)x∈(9,10)時(shí),y'<0;
∴當(dāng)x=9時(shí),y取得極大值也是最大值,
${y_{max}}=24.3×9-\frac{1}{10}×{9^3}-20=125.8$…9分
②當(dāng)x>10
時(shí),$y=304-(\frac{1000}{x}+8.1x)≤304-2\sqrt{\frac{1000}{x}×8.1x}=124$
 
當(dāng)且僅當(dāng)$\frac{1000}{x}=8.1x$,即$x=\frac{100}{9}$時(shí),ymax=124.…11分
  綜合①、②知x=9時(shí),y取最大值,
所以當(dāng)年產(chǎn)量為9萬(wàn)件時(shí),該公司生產(chǎn)此種儀器獲利最大.…12分

點(diǎn)評(píng) 本題考查實(shí)際問(wèn)題的解法,函數(shù)的導(dǎo)數(shù)在最值中的應(yīng)用,基本不等式的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的一動(dòng)點(diǎn)P到左、右焦點(diǎn)F1,F(xiàn)2的距離之和為2$\sqrt{2}$,點(diǎn)P到橢圓一個(gè)焦點(diǎn)的最遠(yuǎn)距離為$\sqrt{2}$+1
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)右焦點(diǎn)F2的直線交橢圓于A,B兩點(diǎn)
①若y軸上是否存在一點(diǎn)M(0,$\frac{1}{3}$)滿足|MA|=|MB|,求直線l斜率k的值;
②是否存在這樣的直線l,使S△ABO的最大值為$\frac{\sqrt{2}}{2}$(其中O為坐標(biāo)原點(diǎn))?若存在,求直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若對(duì)數(shù)函數(shù)y=logax的圖象過(guò)點(diǎn)(9,2),則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,則點(diǎn)C1到平面A1BD的距離是$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四棱錐B-ACDE的底面ACDE滿足 DE∥AC,AC=2DE.
(Ⅰ)若DC⊥平面ABC,AB⊥BC,求證:平面ABE⊥平面BCD;
(Ⅱ)求證:在平面ABE內(nèi)不存在直線與DC平行;
某同學(xué)用分析法證明第(1)問(wèn),用反證法證明第 (2)問(wèn),證明過(guò)程如下,請(qǐng)你在橫線上填上合適的內(nèi)容.
(Ⅰ)證明:欲證平面ABE⊥平面BCD,
只需證AB⊥平面BCD,
由已知AB⊥BC,只需證AB⊥DC,
由已知DC⊥平面ABC可得DC⊥AB成立,
所以平面ABE⊥平面BCD.
(Ⅱ)證明:假設(shè)在平面ABE內(nèi)存在直線與DC平行,
又因?yàn)镈C?平面ABE,所以DC∥平面ABE.
又因?yàn)槠矫鍭CDE∩平面ABE=AE,
所以DC∥AE,
又因?yàn)镈E∥AC,所以ACDE是平行四邊形,
所以AC=DE,這與AC=2DE矛盾,
所以假設(shè)錯(cuò)誤,原結(jié)論正確.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知A=$\frac{3}{{\frac{1}{p}+\frac{1}{q}+\frac{1}{s}}}$,B=$\frac{p+q+s}{3}$( p,q,s∈(0,+∞))
(Ⅰ)分別就$\left\{{\begin{array}{l}{p=1}\\{q=1}\\{s=1}\end{array}}$和$\left\{{\begin{array}{l}{p=1}\\{q=2}\\{s=1}\end{array}}$判斷A與B的大小關(guān)系,并由此猜想:對(duì)于任意的正數(shù)p,q,s,A與B的大小關(guān)系及等號(hào)成立的條件;
(Ⅱ)請(qǐng)證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖所示,是某人在用火柴拼圖時(shí)呈現(xiàn)的圖形,其中第1個(gè)圖象用了3根火柴,第2個(gè)圖象用了9根火柴,第3個(gè)圖形用了18根火柴,
…,則第20個(gè)圖形用的火柴根數(shù)為630.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=2ax-$\frac{x}$+lnx,若f(x)在x=1,x=$\frac{1}{2}$處取得極值,
(Ⅰ)求a、b的值;
(Ⅱ)求f(x)在[$\frac{1}{4}$,2]上的單調(diào)區(qū)間
(Ⅲ)在[$\frac{1}{4}$,2]存在x0,使得不等式f(x0)-c≤0成立,求c的最小值.
(參考數(shù)據(jù):e2≈7.389,e3≈20.08)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了120人,其中女性65人,男性55人.女性中有40人主要的休閑方式是看電視,另外25人主要的休閑方式是運(yùn)動(dòng);男性中有20人主要的休閑方式是看電視,另外35人主要的休閑方式是運(yùn)動(dòng).則能夠以多大的把握認(rèn)為性別與休閑方式有關(guān)系( 。
A.0.1B.0.01C.0.9D.0.99

查看答案和解析>>

同步練習(xí)冊(cè)答案