【題目】如圖,五面體ABCDE,四邊形ABDE是矩形,△ABC是正三角形,AB1,AE2,F是線段BC上一點,直線BC與平面ABD所成角為30°,CE∥平面ADF.

(1)試確定F的位置;

(2)求三棱錐ACDF的體積.

【答案】(1)FBC的中點.(2) .

【解析】試題分析:(1)連接BEAD于點O,BC的中點F,再根據(jù)三角形中位線性質(zhì)得CEOF,最后根據(jù)線面平行判定定理得線面平行(2)根據(jù)直線BC與平面ABD所成角為30°,可得C到平面ABD的距離,再利用等體積法求三棱錐ACDF的體積.

試題解析:(1)證明 連接BEAD于點O,連接OF

CE∥平面ADF,CE平面BEC,平面ADF∩平面BECOF,CEOF.

OBE的中點,∴FBC的中點.

(2) BC與平面ABD所成角為30°BCAB1,

C到平面ABD的距離為hBC·sin 30°.

AE2,VACDFVFACDVBACDVCABD×××1×2×.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) .

(1)當(dāng)時,討論的單調(diào)性;

(2)若函數(shù)有兩個極值點,且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點是圓內(nèi)的一個定點,點是圓上的任意一點,線段的垂直平分線和半徑相交于點,當(dāng)點在圓上運動時,點的軌跡為曲線.

(1)求曲線的方程;

(2)點, ,直線軸交于點,直線軸交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象上一點處的切線方程為.

(1)求的值;

(2)若方程內(nèi)有兩個不等實根,求的取值范圍(其中

為自然對數(shù)的底).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)滿足以下兩個條件的有窮數(shù)列, , , 期待數(shù)列

;

.

)分別寫出一個單調(diào)遞增的階和期待數(shù)列”.

)若某期待數(shù)列是等差數(shù)列,求該數(shù)列的通項公式.

)記期待數(shù)列的前項和為,試證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)|ax2|.

(1)當(dāng)a2時,解不等式f(x)>x1

(2)若關(guān)于x的不等式f(x)f(x)< 有實數(shù)解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運輸公司接受了向一地區(qū)每天至少運送180 t物資的任務(wù),該公司有8輛載重為6 t的A型卡車和4輛載重為10 t的B型卡車,有10名駕駛員,每輛卡車每天往返的次數(shù)為A型卡車4次,B型卡車3次,每輛卡車每天往返的費用為A型卡車320元,B型卡車504元,則公司如何調(diào)配車輛,才能使公司所花的費用最低,最低費用為________元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·山東)設(shè)f(x)xlnxax2(2a1)x,a∈R.

(1)g(x)f′(x),求g(x)的單調(diào)區(qū)間;

(2)已知f(x)x1處取得極大值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為,焦距為2c,且c, ,2成等比數(shù)列.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)點B坐標(biāo)為(0, ),問是否存在過點B的直線l交橢圓C于M,N兩點,且滿足 (O為坐標(biāo)原點)?若存在,求出此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案