設(shè)命題p:f(x)=在區(qū)間(1,+∞)上是減函數(shù);命題q:x1,x2是方程x2-ax-2=0的兩個(gè)實(shí)根,且不等式m2+5m-3≥|x1-x2|對(duì)任意的實(shí)數(shù)a∈[-1,1]恒成立.若p∧q為真,試求實(shí)數(shù)m的取值范圍.
(1,+∞)
【解析】
試題分析:先根據(jù)分式函數(shù)的單調(diào)性求出命題p為真時(shí)m的取值范圍,然后根據(jù)題意求出|x1-x2|的最大值,再解不等式,若-p∧q為真則命題p假q真,從而可求出m的取值范圍.
試題解析:由于f(x)=的單調(diào)遞減區(qū)間是(-∞,m)和(m,+∞),而f(x)又在(1,+∞)上是減函數(shù),所以m≤1,即p:m≤1.對(duì)于命題q:|x1-x2|==≤3,則m2+5m-3≥3,即m2+5m-6≥0,
解得m≥1或m≤-6,若p∧q為真,則p假q真,所以解之得m>1,因此實(shí)數(shù)m的取值范圍是(1,+∞).
考點(diǎn):1.函數(shù)恒成立問題;2.復(fù)合命題的真假.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)
(1)若時(shí),函數(shù)有三個(gè)互不相同的零點(diǎn),求的取值范圍;
(2)若函數(shù)在內(nèi)沒有極值點(diǎn),求的取值范圍;
(3)若對(duì)任意的,不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題
下列四個(gè)命題:
,”是全稱命題;
命題“,”的否定是“,使”;
若,則;
若為假命題,則、均為假命題.
其中真命題的序號(hào)是( )
A.①② B.①④ C.②④ D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
在中,角A,B,C所對(duì)應(yīng)的邊分別為,則是的( )
A.充分必要條件 B.充分非必要條件
C.必要非充分條件 D.非充分非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期第一次統(tǒng)練理科數(shù)學(xué)試卷(解析版) 題型:填空題
四棱錐的五個(gè)頂點(diǎn)都在一個(gè)球面上,且底面ABCD是邊長(zhǎng)為1的正方形,,,則該球的體積為 _
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期第一次統(tǒng)練理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知正四棱柱ABCDA1B1C1D1中,AA1=2AB,E為AA1的中點(diǎn),則異面直線BE與CD1所成的角的余弦值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期第一次統(tǒng)練文科數(shù)學(xué)試卷(解析版) 題型:填空題
在平面直角坐標(biāo)系中,若圓上存在,兩點(diǎn)關(guān)于點(diǎn)成中心對(duì)稱,則直線的方程為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高三上學(xué)期第一次統(tǒng)練文科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖是半圓的直徑,是弧的三等分點(diǎn),是線段的三等分點(diǎn),若,則 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com