已知數(shù)列各項為非負(fù)實數(shù),前n項和為,且
(1)求數(shù)列的通項公式;
(2)當(dāng)時,求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
若數(shù)列{an}滿足an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項,并求出前6項之和;
(2)在“凸數(shù)列”{an}中,求證:an+3=-an,n∈N*;
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前2011項和S2011.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是正數(shù)組成的數(shù)列,,且點(diǎn)在函數(shù)的圖象上.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列滿足,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是首項為,公差為的等差數(shù)列,是其前項和.
(1)若,,求數(shù)列的通項公式;
(2)記,,且、、成等比數(shù)列,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為零的等差數(shù)列的前項和,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列滿足,求的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的通項公式為,數(shù)列的前項和為,且滿足.
(1)求的通項公式;
(2)在中是否存在使得是中的項,若存在,請寫出滿足題意的其中一項;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
三個不同的數(shù)成等差數(shù)列,其和為6,如果將此三個數(shù)重新排列,他們又可以成等比數(shù)列,求這個等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若數(shù)列的前項和為,對任意正整數(shù)都有,記.
(1)求,的值;
(2)求數(shù)列的通項公式;
(3)若求證:對任意.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)各項均為正數(shù)的數(shù)列的前項和為,滿足且構(gòu)成等比數(shù)列.
(1) 證明:;
(2) 求數(shù)列的通項公式;
(3) 證明:對一切正整數(shù),有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com