在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12.q=
(Ⅰ)求an與bn;
(Ⅱ)設(shè)數(shù)列{cn}滿足cn=,求的{cn}的前n項(xiàng)和Tn
【答案】分析:(Ⅰ)根據(jù)條件列出關(guān)于公差和公比的方程組,解方程即可求出公差和公比,進(jìn)而求出通項(xiàng);
(Ⅱ)對通項(xiàng)化簡,利用裂項(xiàng)法求和,即可得到數(shù)列的前n項(xiàng)和.
解答:解:(Ⅰ)設(shè){an}的公差為d,
因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131024190449866714610/SYS201310241904498667146016_DA/0.png">
所以b2+b2q=12,即q+q2=12---(2分)
∴q=3或q=-4(舍),
b2=3,s2=9,a2=6,d=3.---(4分)
故an=3+3(n-1)=3n,
.----------(6分)
(Ⅱ)因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131024190449866714610/SYS201310241904498667146016_DA/2.png">=,------(8分)
所以:cn=.---(10分)
故Tn=.-(12分)
點(diǎn)評:本題考查數(shù)列的通項(xiàng)與求和,考查等差數(shù)列與等比數(shù)列的綜合,考查裂項(xiàng)法求數(shù)列的和,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=-2010,其前n項(xiàng)的和為Sn.若
S2010
2010
-
S2008
2008
=2,則S2010=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+3a8+a15=60,則2a9-a10的值為
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的兩個(gè)根,那么使得前n項(xiàng)和Sn為負(fù)值的最大的n的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若S4=1,S8=4,則a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步練習(xí)冊答案