用數(shù)學(xué)歸納法證明:“1+a+a2+…+an+1=數(shù)學(xué)公式(a≠1)”在驗(yàn)證n=1時(shí),左端計(jì)算所得的項(xiàng)為


  1. A.
    1
  2. B.
    1+a
  3. C.
    1+a+a2
  4. D.
    1+a+a2+a3
C
分析:首先分析題目已知用數(shù)學(xué)歸納法證明:“1+a+a2+…+an+1=(a≠1)”在驗(yàn)證n=1時(shí),左端計(jì)算所得的項(xiàng).把n=1代入等式左邊即可得到答案.
解答:用數(shù)學(xué)歸納法證明:“1+a+a2+…+an+1=(a≠1)”
在驗(yàn)證n=1時(shí),把當(dāng)n=1代入,左端=1+a+a2
故選C.
點(diǎn)評(píng):此題主要考查數(shù)學(xué)歸納法證明不等式的問(wèn)題,屬于概念性問(wèn)題,計(jì)算量小,屬于基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,b>0,n>1,n∈N*.用數(shù)學(xué)歸納法證明:
an+bn
2
≥(
a+b
2
)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(Ⅱ)對(duì)于n≥6,已知(1-
1
n+3
)n
1
2
,求證(1-
m
n+3
)n<(
1
2
)m
,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明貝努利(Bernoulli)不等式:如果x是實(shí)數(shù),且x>-1,x≠0,n為大于1的自然數(shù),那么有(1+x)n>1+nx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:函數(shù)f(x)=-
1
6
x3+
1
2
x2+x
,x∈R.
(Ⅰ)求證:函數(shù)f(x)的圖象關(guān)于點(diǎn)A(1,
4
3
)
中心對(duì)稱,并求f(-2007)+f(-2006)+…+f(0)+f(1)+…+f(2009)的值.
(Ⅱ)設(shè)g(x)=f′(x),an+1=g(an),n∈N+,且1<a1<2,求證:
(。┱(qǐng)用數(shù)學(xué)歸納法證明:當(dāng)n≥2時(shí),1<an
3
2

(ⅱ)|a1-
2
|+|a2-
2
|+…+|an-
2
|<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明:(cosα+isinα)n=cosnα+isinnα,(其中i為虛數(shù)單位)

查看答案和解析>>

同步練習(xí)冊(cè)答案