7.定義在[0,+∞)上的函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},\sqrt{x}≥|x-2|}\\{|x-2|,\sqrt{x}<|x-2|}\end{array}\right.$,則滿足不等式1≤f(x)≤2的x的取值范圍是[0,4].

分析 結(jié)合函數(shù)f(x)的意義,f(x)≥1可化為$\sqrt{x}$≥1或|x-2|≥1,f(x)≤2可化為$\left\{\begin{array}{l}{\sqrt{x}≤2}\\{|x-2|≤2}\end{array}\right.$,從而解得.

解答 解:∵f(x)=$\left\{\begin{array}{l}{\sqrt{x},\sqrt{x}≥|x-2|}\\{|x-2|,\sqrt{x}<|x-2|}\end{array}\right.$表示了$\sqrt{x}$與|x-2|中的較大的值,
∵f(x)≥1,
∴$\sqrt{x}$≥1或|x-2|≥1,
解得,x∈[0,+∞);
∵f(x)≤2,
∴$\left\{\begin{array}{l}{\sqrt{x}≤2}\\{|x-2|≤2}\end{array}\right.$,
解得,0≤x≤4;
故答案為:[0,4].

點(diǎn)評(píng) 本題考查了分段函數(shù)的應(yīng)用,注意條件的轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)f(x)=$\sqrt{x}$-alnx,a∈R
(1)若a=2,求f(x)的最值;
(2)若f(x)存在最小值,求其最小值g(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)命題p:x2+2x-3<0 q:-5≤x<1,則命題p成立是命題q成立的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知tanx=-1,且cosx=-$\frac{\sqrt{2}}{2}$,求x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在△ABC中,若A>B,則下列關(guān)系中不一定正確的是③.
①sinA>sinB②cosA<cosB③sin2A>sin2B④cos2A<cos2B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.一平面直角坐標(biāo)系中,已知伸縮變換φ:$\left\{\begin{array}{l}{x′=3x}\\{2y′=y}\end{array}\right.$,A($\frac{1}{3}$,-2)經(jīng)過(guò)φ變換所得的點(diǎn)A′的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知$\frac{1+cos2α}{sin2α}$=$\frac{1}{2}$,則$\frac{1}{sinαcosα}$等于(  )
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若函數(shù)f(x)=x+$\frac{1}{x-1}$(x>1)在x=a處取最小值,則實(shí)數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.下列等式:①f(x+y)=f(x)+f(y);②f(xy)=f(x)+f(y);③f(x+y)=f(x)•f(y);④f(xy)=f(x)•f(y)中,則指數(shù)函數(shù)f(x)=2x滿足的是第③條.

查看答案和解析>>

同步練習(xí)冊(cè)答案