19.已知$\frac{1+cos2α}{sin2α}$=$\frac{1}{2}$,則$\frac{1}{sinαcosα}$等于( 。
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{5}{2}$

分析 由$\frac{1+cos2α}{sin2α}$=$\frac{1}{2}$,利用倍角公式可得$\frac{2co{s}^{2}α}{2sinαcosα}$=$\frac{1}{2}$,解得tanα.再利用同角三角函數(shù)基本關(guān)系式即可得出.

解答 解:∵$\frac{1+cos2α}{sin2α}$=$\frac{1}{2}$,∴$\frac{2co{s}^{2}α}{2sinαcosα}$=$\frac{1}{2}$,解得tanα=2.
則$\frac{1}{sinαcosα}$=$\frac{si{n}^{2}α+co{s}^{2}α}{sinαcosα}$=$\frac{ta{n}^{2}α+1}{tanα}$=$\frac{{2}^{2}+1}{2}$=$\frac{5}{2}$.
故選:D.

點評 本題考查了倍角公式、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}滿足a1=19,an+1=an-2(n∈N*),則當(dāng)數(shù)列{an}的前n項和Sn取得最大值時,n的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2+21nx.
(1)求f(x)的單調(diào)區(qū)間.
(2)若f(x)在(0,1]上的最大值是-2,求a的值.
(3)記g(x)=f(x)+(a-1)lnx+1,當(dāng)a≤-2時,若對任意x1,x2∈(0,+∞),總有|g(x1)-g(x2)|≥k|x1-x2|成立,試求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義在[0,+∞)上的函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},\sqrt{x}≥|x-2|}\\{|x-2|,\sqrt{x}<|x-2|}\end{array}\right.$,則滿足不等式1≤f(x)≤2的x的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一個圓錐過軸的截面為等邊三角形,它的頂點和底面圓周在球O的球面上,則該圓錐的體積與球O的體積的比值為$\frac{9}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知實數(shù)x,y滿足方程x2+y2-4x+1=0.
(1)求$\frac{y}{x}$的最大值和最小值;
(2)求y-x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱錐P-ABCD中,四邊形ABCD為平行四邊形,E,F(xiàn)分別為所在邊中點,證明:EF∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在等差數(shù)列{an}中,已知a1=2,a8=9,則S14=119.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=x|x|+sinx+1,則:f(-2016)+(-2015)+…+f(-1)+f(0)+f(1)+…+(2015)+(2016)的值為( 。
A.0B.2016C.4032D.4033

查看答案和解析>>

同步練習(xí)冊答案