【題目】設(shè)α是空間中的一個平面,l,m,n是三條不同的直線,則下列命題中正確的是( )
A.若mα,nα,l⊥m,l⊥n,則l⊥α
B.若mα,n⊥α,l⊥n,則l∥m
C.若l∥m,m⊥α,n⊥α,則l∥n
D.若l⊥m,l⊥n,則n∥m
【答案】C
【解析】解:對于A,根據(jù)線面垂直的判定,當(dāng)m,n相交時,結(jié)論成立,故A不正確; 對于B,mα,n⊥α,則n⊥m,∵l⊥n,∴可以選用正方體模型,可得l,m平行、相交、異面都有可能,如圖所示,故B不正確;
對于C,由垂直于同一平面的兩直線平行得m∥n,再根據(jù)平行線的傳遞性,即可得l∥n,故C正確;
對于D,l⊥m,l⊥n,則n、m平行、相交、異面均有可能,故D不正確
故選C.
A、根據(jù)線面垂直的判定,可判斷;
B、選用正方體模型,可得l,m平行、相交、異面都有可能;
C、由垂直于同一平面的兩直線平行得m∥n,再根據(jù)平行線的傳遞性,即可得l∥n;
D、n、m平行、相交、異面均有可能.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點F,且點F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐C﹣ADE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c,其對稱軸為y軸(其中b,c為常數(shù)) (Ⅰ)求實數(shù)b的值;
(Ⅱ)記函數(shù)g(x)=f(x)﹣2,若函數(shù)g(x)有兩個不同的零點,求實數(shù)c的取值范圍;
(Ⅲ)求證:不等式f(c2+1)>f(c)對任意c∈R成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>1,f(x)=x2﹣ax , 當(dāng)x∈(﹣1,1)時,均有f(x)< ,則實數(shù)a的取值范圍是( )
A.(1,2)
B.(1,3]
C.(1, )
D.(1,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 50 | 60 | 70 |
(1)畫出散點圖;
(2)求線性回歸方程;
(3)預(yù)測當(dāng)廣告費支出為7百萬元時的銷售額.參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有五張卡片,其中紅色卡片三張,標(biāo)號分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號分別為1,2.
(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率;
(2)現(xiàn)袋中再放入一張標(biāo)號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知PA與⊙O相切,A為切點,PBC為割線,弦CD∥AP,AD,BC相交于E點,F為CE上一點,且DE2=EF·EC.
(1)求證:∠P=∠EDF;
(2)求證:CE·EB=EF·EP;
(3)若CE∶BE=3∶2,DE=6,EF=4,求PA的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生的課外體育鍛煉平均每天運動的時間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均課外課外體育運動時間在[40,60)上的學(xué)生評價為“課外體育達(dá)標(biāo)”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨立的,求X的數(shù)學(xué)期望和方差.
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 (其中n<15)的展開式中第9項,第10項,第11項的二項式系數(shù)成等差數(shù)列.
(1)求n的值;
(2)寫出它展開式中的所有有理項.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com