2.設(shè)p,q是兩個命題,則“p,q均為假命題”是“p∧q為假命題”的( 。l件.
A.充分不必要B.必要不充分
C.充分必要D.既不充分也不必要

分析 根據(jù)充分條件和必要條件的定義進行判斷即可.

解答 解:若p∧q為假命題,則p,q至少有一個為假命題,
故“p,q均為假命題”是“p∧q為假命題”的充分不必要條件,
故選:A

點評 本題主要考查充分條件和必要條件的判斷,根據(jù)復(fù)合命題真假之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)全集U=R,集合A={x|2x>1},B={x|x2-4x-5≤0},則(∁UA)∩B等于( 。
A.[-1,0)B.(0,5]C.[-1,0]D.[0,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=sinωx+cos(ωx+$\frac{π}{6}$)(ω>0)的最小正周期T=4π
(I)求ω;
(Ⅱ)當(dāng)x∈[-π,π]時,求函數(shù):y=f(x)-$\frac{1}{2}$的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.將1~9這9個數(shù)平均分成3組,則每組的3個數(shù)都成等差數(shù)列的分組方法的種數(shù)是( 。
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知拋物線C:y2=8x的焦點為F,準(zhǔn)線為l,P是l上一點,Q是直線PF與C的一個交點,若$\overrightarrow{PF}$=3$\overrightarrow{QF}$,則|QF|=( 。
A.$\frac{5}{2}$B.$\frac{8}{3}$C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知C,D是圓A:(x+1)2+y2=1與圓B:x2+(y-2)2=4的公共點,則△BCD的面積為(  )
A.$\frac{4}{5}$B.$\frac{8}{5}$C.$\frac{{4\sqrt{5}}}{5}$D.$\frac{{8\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知ξ服從正態(tài)分布N(1,σ2),a∈R,則“P(ξ>a)=0.5”是“關(guān)于x的二項式${({ax+\frac{1}{x^2}})^3}$的展開式的常數(shù)項為3”的(  )
A.充分不必要條件B.必要不充分條件
C.既不充分又不必要條件D.充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知α∈(π,$\frac{3}{2}$π),cosα=-$\frac{4}{5}$,則tanα=(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.-$\frac{4}{3}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.過點P(-5,-4),且與兩坐標(biāo)軸在第三象限圍成三角形面積為5的直線方程是8x+5y+20=0.

查看答案和解析>>

同步練習(xí)冊答案