證明以下結(jié)論:
(1)若x>y>0,則(x2-y2)(x+y)>(x2+y2)(x-y);
(2)若a>0,b>0,a≠b,則aabb(ab)
a+b2
分析:(1)對(duì)所證的不等式作差后化積,再分析乘積的符號(hào),從而可證得結(jié)論;
(2)利用分析法,在a>0,b>0,a≠b時(shí),要證aabb(ab)
a+b
2
,需證(
a
b
)
a-b
2
>1;通過(guò)對(duì)a,b的大小關(guān)系的討論,利用指數(shù)函數(shù)的性質(zhì)即可使原結(jié)論得證.
解答:證明:(1)∵(x2-y2)(x+y)-(x2+y2)(x-y)=(x-y)[(x+y)2-(x2+y2)]=(x-y)×2xy;
又x>y>0,
∴x-y>0,xy>0,
∴(x-y)×2xy>0,
∴(x2-y2)(x+y)>(x2+y2)(x-y);
(2)要證aabb(ab)
a+b
2
,
需證aa-
a+b
2
bb-
a+b
2
=a
a-b
2
b
b-a
2
=(
a
b
)
a-b
2
>1;
∵a>0,b>0,a≠b,
∴當(dāng)a>b>0時(shí),
a
b
>1,
a-b
2
>0,由指數(shù)函數(shù)y=ax(a>1)的性質(zhì)可知,(
a
b
)
a-b
2
>1;
當(dāng)b>a>0時(shí),0<
a
b
<1,
a-b
2
<0,由指數(shù)函數(shù)y=ax(0<a<1)的性質(zhì)可知,(
a
b
)
a-b
2
>1;
綜上所述,當(dāng)a>0,b>0,a≠b時(shí),(
a
b
)
a-b
2
>1成立;
故原結(jié)論成立,即a>0,b>0,a≠b,則aabb(ab)
a+b
2
點(diǎn)評(píng):本題考查綜合法與分析法,著重考查轉(zhuǎn)化思想推理分析、證明的能力,考查指數(shù)函數(shù)的性質(zhì),屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、(1)已知p3+q3=2,求證p+q≤2,用反證法證明時(shí),可假設(shè)p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對(duì)值都小于1.用反證法證明時(shí)可假設(shè)方程有一根x1的絕對(duì)值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀:設(shè)Z點(diǎn)的坐標(biāo)(a,b),r=|
OZ
|,θ是以x軸的非負(fù)半軸為始邊、以O(shè)Z所在的射線為終邊的角,復(fù)數(shù)z=a+bi還可以表示為z=r(cosθ+isinθ),這個(gè)表達(dá)式叫做復(fù)數(shù)z的三角形式,其中,r叫做復(fù)數(shù)z的模,當(dāng)r≠0時(shí),θ叫做復(fù)數(shù)z的幅角,復(fù)數(shù)0的幅角是任意的,當(dāng)0≤θ<2π時(shí),θ叫做復(fù)數(shù)z的幅角主值,記作argz.
根據(jù)上面所給出的概念,請(qǐng)解決以下問(wèn)題:
(1)設(shè)z=a+bi=r(cosθ+isinθ) (a、b∈R,r≥0),請(qǐng)寫(xiě)出復(fù)數(shù)的三角形式與代數(shù)形式相互之間的轉(zhuǎn)換關(guān)系式;
(2)設(shè)z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的復(fù)數(shù)乘法、除法的運(yùn)算法則,請(qǐng)寫(xiě)出三角形式下的復(fù)數(shù)乘法、除法的運(yùn)算法則.(結(jié)論不需要證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三角函數(shù)內(nèi)容豐富,公式很多.如果你仔細(xì)觀察、敢于設(shè)想、科學(xué)求證,那么你也能發(fā)現(xiàn)其中的一些奧秘.請(qǐng)你完成以下問(wèn)題:
(1)計(jì)算:(直接寫(xiě)答案)
cos2°
sin47°
+
cos88°
sin133°
=
2
2
cos5°
sin50°
+
cos85°
sin130°
=
2
2

(2)根據(jù)(1)的計(jì)算結(jié)果,請(qǐng)你猜出一個(gè)一般性的結(jié)論:
cos(θ-45°)
sinθ
+
cos(135°-θ)
sin(180°-θ)
=
2
cos(θ-45°)
sinθ
+
cos(135°-θ)
sin(180°-θ)
=
2
.(用數(shù)學(xué)式子加以表達(dá),并證明你的結(jié)論,寫(xiě)出推理過(guò)程.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆河北省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題

(1)已知:,求證:,用反證法證明時(shí),可假設(shè);

(2)已知:,,求證:方程的兩根的絕對(duì)值都小于1.用反證法證明時(shí)可假設(shè)方程有一根的絕對(duì)值大于或等于1,即假設(shè),以下結(jié)論正確的是( 。

A.的假設(shè)都錯(cuò)誤

B.的假設(shè)都正確

C.的假設(shè)正確;的假設(shè)錯(cuò)誤

D.的假設(shè)錯(cuò)誤;的假設(shè)正確

 

查看答案和解析>>

同步練習(xí)冊(cè)答案