16.函數(shù)$f(x)=-|x|-\sqrt{x}+3$的零點所在區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

分析 判斷函數(shù)的單調(diào)性,利用函數(shù)的零點定理判斷求解即可.

解答 解:函數(shù)$f(x)=-|x|-\sqrt{x}+3$是單調(diào)減函數(shù),因為f(1)=1>0,f(2)=1-$\sqrt{2}$<0,∴f(1)f(2)<0,可知函數(shù)$f(x)=-|x|-\sqrt{x}+3$的零點所在區(qū)間為:(1,2).
故選:B.

點評 本題考查函數(shù)的零點定理的應(yīng)用,值域函數(shù)的單調(diào)性的判斷,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)y=f(x)在點P(1,m)處的切線方程為y=2x-1,則f(1)+f'(1)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等腰直角三角形ABC中,斜邊BC=6,則$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BC}$•$\overrightarrow{BA}$+$\overrightarrow{CA}$$•\overrightarrow{CB}$的值為( 。
A.25B.36C.9D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.袋中裝有6只乒乓球,其中4只是白球,2只黃球,先后從袋中有放回地取出兩球,則取到兩球都是白球的概率是$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=2sin(3x+φ)(|φ|<$\frac{π}{2}$)的一條對稱軸為x=-$\frac{π}{12}$,則φ=( 。
A.-$\frac{π}{4}$B.-$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實數(shù)a<0,函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+2a,\;x<1\\-x,x≥1\end{array}\right.$,若f(1-a)≥f(1+a),則實數(shù)a的取值范圍是( 。
A.(-∞,-2]B.[-2,-1]C.[-1,0)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)$p:{log_2}x<0,q:{2^x}≥2$,則p是¬q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分條件也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題中真命題的個數(shù)為(  )
①“p∨(¬p)”必為真命題;
②2+$\sqrt{5}$>$\sqrt{3}$+$\sqrt{6}$;
③數(shù)列{5-2n}是遞減的等差數(shù)列;
④函數(shù)f(x)=2x+$\frac{1}{x}$(x<0)的最小值為-2$\sqrt{2}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)$y={log_{\frac{1}{3}}}(-{x^2}+2x+8)$的值域為[-2,+∞).

查看答案和解析>>

同步練習(xí)冊答案