12.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),關(guān)于數(shù)列{an}有下列幾個(gè)命題:
①若an=an+1(n∈N*),則{an]既是等差數(shù)列又是等比數(shù)列;
②若Sn=an2+bn(a、b∈R),則{an}是等差數(shù)列;
③若Sn=1-(-1)n,則{an}是等比數(shù)列;
④若{an}為等差數(shù)列,且存在ak+1>ak>0(k∈N*),則對(duì)于任意自然數(shù)n>k,都有an>0.
其中正確命題的序號(hào)是②③④.

分析 對(duì)于①,直接據(jù)反例進(jìn)行判斷;
對(duì)于②和③,利用數(shù)列中an與Sn的關(guān)系式求出數(shù)列的通項(xiàng),由等差數(shù)列和等比數(shù)列的定義加以驗(yàn)證;
對(duì)于④依題意,可得公差d>0,從而可判斷④正確.

解答 解:①如:數(shù)列0、0、0、…,是等差數(shù)列但不是等比數(shù)列,則①不正確;
②由Sn=an2+bn,(a,b∈R),當(dāng)n=1時(shí),a1=S1=a+b,
當(dāng)n≥2時(shí),an=Sn-Sn-1=an2+bn-[a(n-1)2+b(n-1)]=2an-a+b.
當(dāng)n=1時(shí)a1適合上式.
∴an=2an-a+b.滿足an+1-an=2a為常數(shù),則{an}是等差數(shù)列,
當(dāng){an}是等差數(shù)列時(shí),Sn=na1+$\frac{n(n-1)}{2}$d=$\frach9bnttt{2}$n2+(a1-$\frac5b7hn7f{2}$)n,
即為Sn=an2+bn(a,b∈R)形式,成立,則②正確;
③若Sn=1-(-1)n,當(dāng)n=1時(shí),a1=S1=2,
當(dāng)n≥2時(shí),an=Sn-Sn-1=1-(-1)n-[1-(-1)n-1]=(-1)n+1+(-1)n-1
當(dāng)n為奇數(shù)時(shí),an=2.當(dāng)n為偶數(shù)時(shí),an=-2.
所以{an}是等比數(shù)列,則③正確;
④一個(gè)等差數(shù)列{an}中,若存在ak+1>ak>0(k∈N*),由ak+1=ak+d知ak+d>ak>0,
故d>0,所以,對(duì)于任意自然數(shù)n>k,都有an>0,則④正確;
故答案為:②③④.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,差數(shù)列和等比數(shù)列的定義,以及數(shù)列中an與Sn的關(guān)系式應(yīng)用,解答的關(guān)鍵在于對(duì)基礎(chǔ)知識(shí)的理解與掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知命題p:“x∈R時(shí),都有x2-x+$\frac{1}{4}$<0”;命題q:“存在x∈R,使sinx+cosx=$\sqrt{2}$成立”.則下列判斷正確的是( 。
A.p∨q為假命題B.p∧q為真命題C.¬p∧q為真命題D.¬p∨¬q是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=ax-3+bsinx+x2+8(ab≠0),且f(-2)=3,則f(2)=21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},則集合A∩(∁UB)等于( 。
A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)A={x∈Z|x≤6},B={x∈Z|x>1},那么A∩B等于( 。
A.{x|1<x≤6}B.{1,2,3,4,5,6}C.{2,3,4,5,6}D.{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠ABC=90°,AB=$\sqrt{3}$,BC=1,AA1=3,BD⊥AC,M為線段CC1上一點(diǎn).
(Ⅰ)求CM的值,使得AM⊥平面A1BD;
(Ⅱ)在(Ⅰ)的條件下,求二面角B-AM-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.關(guān)于統(tǒng)計(jì)數(shù)據(jù)的分析,有以下幾個(gè)結(jié)論:
①一組數(shù)不可能有兩個(gè)眾數(shù);
②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)數(shù)后,方差沒(méi)有變化;
③調(diào)查劇院中觀眾觀看時(shí)的感受,從50排(每排人數(shù)相同)中任意取一排的人參加調(diào)查,屬于分層抽樣;
④如圖是隨機(jī)抽取的200輛汽車通過(guò)某一段公路時(shí)的時(shí)速分布直方圖,根據(jù)這個(gè)直方圖,可以得到時(shí)速在[50,60]的汽車大約是60輛.
這4種說(shuō)法中正確的個(gè)數(shù)是( 。
A.2B.1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在圓x2+y2=4上任取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線段PD,D為垂足,線段PD中點(diǎn)為M,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),點(diǎn)M到直線l:x-y+1=0距離最大值為( 。
A.$\frac{{\sqrt{10}+\sqrt{2}}}{2}$B.$\frac{{\sqrt{10}-\sqrt{2}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求(∁UA)∩(∁UB)=( 。
A.{x|-2≤x≤3}B.{x|x<-2或x>4}C.{x|-3≤x≤4}D.{x|x<-3或x>4}

查看答案和解析>>

同步練習(xí)冊(cè)答案