【題目】設(shè)f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 對(duì)任意實(shí)數(shù)a≠0恒成立,求實(shí)數(shù)x的取值范圍.

【答案】
(1)解:由f(x)≤x+2得:

,

即有1≤x≤2或0≤x<1或x∈,

解得0≤x≤2,

所以f(x)≤x+2的解集為[0,2]


(2)解: =|1+ |﹣|2﹣ |≤|1+ +2﹣ |=3,

當(dāng)且僅當(dāng)(1+ )(2﹣ )≤0時(shí),取等號(hào).

由不等式f(x)≥ 對(duì)任意實(shí)數(shù)a≠0恒成立,

可得|x﹣1|+|x+1|≥3,即

解得x≤﹣ 或x≥ ,

故實(shí)數(shù)x的取值范圍是(﹣∞,﹣ ]∪[ ,+∞)


【解析】(1)運(yùn)用絕對(duì)值的含義,對(duì)x討論,分x≥1,﹣1<x<1,x≤﹣1,去掉絕對(duì)值,得到不等式組,解出它們,再求并集即可得到解集;(2)運(yùn)用絕對(duì)值不等式的性質(zhì),可得不等式右邊的最大值為3,再由不等式恒成立思想可得f(x)≥3,再由去絕對(duì)值的方法,即可解得x的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|+|2x+1|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若關(guān)于x的方程 =a的解集為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解本校學(xué)生在校小賣部的月消費(fèi)情況,隨機(jī)抽取了60名學(xué)生進(jìn)行統(tǒng)計(jì).得到如下樣本頻數(shù)分布表:

月消費(fèi)金額(單位:元)

人數(shù)

30

6

9

10

3

2

記月消費(fèi)金額不低于300元為“高消費(fèi)”,已知在樣本中隨機(jī)抽取1人,抽到是男生“高消費(fèi)”的概率為.

(1)從月消費(fèi)金額不低于400元的學(xué)生中隨機(jī)抽取2人,求至少有1人月消費(fèi)金額不低于500元的概率;

(2)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“高消費(fèi)”與“男女性別”有關(guān),說明理由.

高消費(fèi)

非高消費(fèi)

合計(jì)

男生

女生

25

合計(jì)

60

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生的學(xué)習(xí)情況,某學(xué)校在一次考試中隨機(jī)抽取了20名學(xué)生的成績,分成[50,60),[60,70),[70,80),[80,90),[90,100]五組,繪制了如圖所示頻率分布直方圖.求:

(Ⅰ)圖中m的值;

(II)估計(jì)全年級(jí)本次考試的平均分;

(III)若從樣本中隨機(jī)抽取分?jǐn)?shù)在[80,100]的學(xué)生兩名,求所抽取兩人至少有一人分?jǐn)?shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市交通部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照,,分成5組,制成如圖所示頻率分直方圖.

(1)求圖中x的值;

(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

(3)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的奇偶性,并加以證明;

2)用定義證明上是減函數(shù);

3)函數(shù)上是單調(diào)增函數(shù)還是單調(diào)減函數(shù)?(直接寫出答案,不要求寫證明過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)悉,2017年教育機(jī)器人全球市場(chǎng)規(guī)模已達(dá)到8.19億美元,中國占據(jù)全球市場(chǎng)份額10.8%.通過簡(jiǎn)單隨機(jī)抽樣得到40家中國機(jī)器人制造企業(yè),下圖是40家企業(yè)機(jī)器人的產(chǎn)值頻率分布直方圖.

(1)求的值;

(2)在上述抽取的40個(gè)企業(yè)中任取3個(gè),抽到產(chǎn)值小于500萬元的企業(yè)不超過兩個(gè)的概率是多少?

(3)在上述抽取的40個(gè)企業(yè)中任取2個(gè),設(shè)為產(chǎn)值不超過500萬元的企業(yè)個(gè)數(shù)減去超過500萬元的企業(yè)個(gè)數(shù)的差值,求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知符號(hào)函數(shù)sgnx= ,f(x)是R上的增函數(shù),g(x)=f(x)﹣f(ax)(a>1),則(
A.sgn[g(x)]=sgnx
B.sgn[g(x)]=﹣sgnx
C.sgn[g(x)]=sgn[f(x)]
D.sgn[g(x)]=﹣sgn[f(x)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)響應(yīng)省政府號(hào)召,對(duì)現(xiàn)有設(shè)備進(jìn)行改造,為了分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.如圖是設(shè)備改造前的樣本的頻率分布直方圖,表是設(shè)備改造后的樣本的頻數(shù)分布表.

表:設(shè)備改造后樣本的頻數(shù)分布表

質(zhì)量指標(biāo)值

頻數(shù)

(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān);

設(shè)備改造前

設(shè)備改造后

合計(jì)

合格品

不合格品

合計(jì)

(2)根據(jù)頻率分布直方圖和表 提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對(duì)改造前后設(shè)備的優(yōu)劣進(jìn)行比較;

(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對(duì)合格品進(jìn)行登記細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件售價(jià)元;質(zhì)量指標(biāo)值落在內(nèi)的定為二等品,每件售價(jià)元;其它的合格品定為三等品,每件售價(jià).根據(jù)表的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率.現(xiàn)有一名顧客隨機(jī)購買兩件產(chǎn)品,設(shè)其支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望.

附:

查看答案和解析>>

同步練習(xí)冊(cè)答案