已知Sn為等比數(shù)列{an}的前n項和,且S3=8,S6=7,則a4+a5+…+a9=
 
考點:等比數(shù)列的性質(zhì),等比數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:由等比數(shù)列的性質(zhì)可得S3 、S6-S3、S9-S6仍成等比數(shù)列,由此求得S9的值,即可得到結(jié)果.
解答: 解:等比數(shù)列{an}的前n項和為Sn,已知S3=8,S6=7,則由等比數(shù)列的性質(zhì)可得
S3 、S6-S3、S9-S6仍成等比數(shù)列,即8,-1,S9-7 成等比數(shù)列,
故有 1=8(S9-7),∴S9=
57
8

∴a4+a5+…+a9=
57
8
-7
=
1
8

故答案為:
1
8
點評:本題主要考查等比數(shù)列的定義和性質(zhì),利用了等比數(shù)列每相鄰三項的和仍然構(gòu)成等比數(shù)列,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)的圖象關(guān)于點(-
3
4
,0)
成中心對稱,對任意的實數(shù)x都有f(x)=-f(x+
3
2
),且f(-1)=1,f(0)=-2,則f(1)+f(2)+f(3)+…+f(2014)的值為( 。
A、2B、1C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:方程
x2
2
+
y2
1-k
=1
表示焦點在x軸上的橢圓;命題q:?x∈R,kx2+kx+k+1>0.若“p∧q”與“?p”同時為假命題,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,M,N分別是CC1,BC的中點,則過A、M、N三點的正方體ABCD-A1B1C1D1的截面形狀是( 。
A、平行四邊形B、直角梯形
C、等腰梯形D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若a1=1,公差d=2,Sk+1-Sk=9,k∈N*,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
1-sinxcosx
cos2x
,x∈[0,
π
4
]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角三角形ABE,AB⊥BE,AB=2BE=4,C,D分別是AB,AE上的動點,且CD∥BE,將△ACD沿CD折起到位置A1CD,使平面A1CD與平面BCD所成的二面角A1-CD-B的大小為θ,設(shè)
CD
BE
=λ,λ∈(0,1).
(1)若θ=
π
2
且A1E與平面BCD所成的角的正切值為
2
2
,求二面角A1-DE-B的大小的正切值;
(2)已知λ=
1
2
,G為A1E的中點,若BG⊥A1D,求cosθ的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z是方程z2+2z+2=0的解,若Imz>0,且
a
z
-
.
z
=b+bi(a,b∈R+),則
1
a
+
1
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
p
=(1+
3
cos2x,1),
q
=(-1,sin2x+n)(x∈R,n∈N*),且f(x)=
p
q

(Ⅰ)在銳角△ABC中,a,b,c分別是角A,B,C的對邊,且c=3,△ABC的面積為3
3
,當(dāng)n=1時,f(A)=
3
,求a的值.
(Ⅱ)若x∈[0,
π
2
]
時,f(x)的最大值為an(an為數(shù)列{an}的通項公式),設(shè)數(shù)列{bn}滿足:b1=
1
2
,且n≥2時bn=
1
an-1an
,記數(shù)列{bn}的前n項和Tn,若對?n∈N*,Tn≤k(n+4),求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案