設(shè)是兩條不同的直線,是三個不同的平面,給出下列四個命題:
①若,則   ②若,,,則
③若,,則  ④若,則
其中正確命題的序號是 _______
①② 
解:①選項正確,因為由m⊥α,n∥α,可得出m⊥n;
②選項正確,因為根據(jù)平行的傳遞性可知成立。
③選項不正確,因為當“m∥α,n∥α”時兩線m,n的位置關(guān)系可以是相交,平行,異面故不正確;
④選項不正確,因為當“α⊥γ,β⊥γ”,兩平面α與β的關(guān)系可以是平行或者相交.
綜上知①②,故填寫正確命題的序號是①②
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(Ⅰ) 證明:BC1//平面ACD1
(Ⅱ)證明:A1D⊥D1E;
(Ⅲ) 當E為AB的中點時,求點E到面 ACD1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有三個平面,β,γ,給出下列命題:
①若,β,γ兩兩相交,則有三條交線     ②若⊥β,⊥γ,則β∥γ
③若⊥γ,β∩=a,β∩γ=b,則a⊥b   ④若∥β,β∩γ=,則∩γ=
其中真命題是        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知棱長為1的正方體ABCD-A1B1C1D1中,P在對角線A1C1上,記二面角P-AB-C為α,二面角P-BC-A為β。

(1)當A1P:PC1=1:3時,求cos(α+β)的大小。
(2)點P是線段A1C1(包括端點)上的一個動點,問:當點P在什么位置時,α+β有最小值?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

正方體中,平面和平面的位置關(guān)系為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論錯誤的是
A.BD∥平面CB1D1B.AC1⊥BD
C.AC1⊥平面CB1D1D.異面直線AD與CB1角為60°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

 直線與平面不平行,則(   )
A.相交B.
C.相交或D.以上結(jié)論都不對

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果直線l與平面不垂直,那么在平面內(nèi)(  )
A.不存在與l垂直的直線B.存在一條與l垂直的直線
C.存在無數(shù)條與l垂直的直線D.任一條都與l垂直

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知四棱錐的底面為菱形,且,,相交于點.
(Ⅰ)求證:底面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)若上的一點,且,求的值.

查看答案和解析>>

同步練習冊答案