(本小題滿分14分)
已知棱長為1的正方體ABCD-A1B1C1D1中,P在對角線A1C1上,記二面角P-AB-C為α,二面角P-BC-A為β。

(1)當(dāng)A1P:PC1=1:3時,求cos(α+β)的大小。
(2)點P是線段A1C1(包括端點)上的一個動點,問:當(dāng)點P在什么位置時,α+β有最小值?
(1)- (2)P為A1C1的中點

試題分析: 
作PO⊥面ABCD于O,作OE⊥AB于E,OF⊥BC于F
∵正方體ABCD-A1B1C1D1
∴點O在線段AC上,且AO:OC=1:3
∴α=∠PEO,β=∠PFO       
EO=,F(xiàn)O=,PO=1,PE=,PF=        2分
cosα=,sinα=,cosβ=, sinβ=
cos(α+β)=cosαcosβ-sinαsinβ==-   4分
(2)(8分)
設(shè)A1P=kA1C1,k∈[0,1]                                5分
由第(1)題可知α=∠PEO,β=∠PFO
EO=k,FO=1-k,PO=1,PE=,PF=  
cosα=,sinα=,cosβ=,
sinβ=                   7分
當(dāng)k=0或1時,即點P與A1或C1重合時,其中一個角為,另一個角為,
此時α+β=,tan(α+β)= -1                                        8分
∴當(dāng)k≠0,且k≠1時,tanα=,tanβ=
∴tan(α+β)
=       11分
∵k∈(0,1)   ∴     ∴tan(α+β)∈  
         ∴
∴tan(α+β)=時,α+β有最小值,此時k=時,即點P為A1C1的中點。  14分
點評:本題有一定難度,多章節(jié)知識的綜合
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,點E在棱PA上,且PE=2EA。
(1)求直線PC與平面PAD所成角的余弦值;(6分)
(2)求證:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若兩條直線都與一個平面平行,則這兩條直線的位置關(guān)系是(  )
A.平行B.相交C.異面D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是不同的直線,是不同的平面,有以下四個命題:
 ②  ③  ④
其中正確的個數(shù)(     )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線和平面,且的位置關(guān)系是              .(用符號表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若m、n為兩條不同的直線,α、β為兩個不同的平面,則以下命題正確的是(  ).
A.若m∥α,n∥α,則m∥nB.若m∥n,m⊥α,則n⊥α
C.若m∥β,α∥β,則m∥αD.若α∩β=m,m⊥n,則n⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面為矩形,且,
,(Ⅰ)平面與平面是否垂直?并說明理由;(Ⅱ)求直線與平面所成角的正弦值. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是兩條不同的直線,是三個不同的平面,給出下列四個命題:
①若,,則   ②若,,,則
③若,,則  ④若,,則
其中正確命題的序號是 _______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體中,二面角的正切值為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案