已知函數(shù)

(I)求函數(shù)的單調(diào)遞減區(qū)間;

(II)當(dāng)的最大值和最小值。

解:(I)                                                              

    令,                                       

    解得                                                                      

    ∴函數(shù)的單調(diào)減區(qū)間為(0,2)(注:也可以寫為

(II)方法1:由(1)可得

x

1

(1,2)

2

(2,4)

4

f′(x)

0

+

f(x)

5

3

                                

    方法2:由

   

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實(shí)數(shù))
(I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性(不必證明);
(II)若對(duì)于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(x-
12
)的定義域?yàn)椋╪,n+1)(n∈N*),f(x)的函數(shù)值中所有整數(shù)的個(gè)數(shù)記為g(n).
(1)求出g(3)的值;
(2)求g(n)的表達(dá)式;
(3)若對(duì)于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n為組合數(shù))都成立,求實(shí)數(shù)l的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆山西大學(xué)附中高三4月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題共12分)已知函數(shù)的 部 分 圖 象如 圖 所示.

(I)求 函 數(shù)的 解 析 式;

(II)在△中,角的 對(duì) 邊 分 別 是,若的 取 值 范 圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實(shí)數(shù))
(I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性(不必證明);
(II)若對(duì)于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x(x-
1
2
)的定義域?yàn)椋╪,n+1)(n∈N*),f(x)的函數(shù)值中所有整數(shù)的個(gè)數(shù)記為g(n).
(1)求出g(3)的值;
(2)求g(n)的表達(dá)式;
(3)若對(duì)于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n為組合數(shù))都成立,求實(shí)數(shù)l的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案